Learn More
Cysteine scanning mutagenesis in conjunction with site-directed chemical modification of sulfhydryl groups by p-chloromercuribenzenesulfonate (pCMBS) or N-ethylmaleimide (NEM) was applied to putative transmembrane segments (TM) 2 and 7 of the cysteine-less glucose transporter GLUT1. Valid for both helices, the majority of cysteine substitution mutants(More)
Cys-421 and Cys-429 of Glut1 were replaced by site-directed mutagenesis in order to investigate their involvement in basal glucose transport and transport inhibition. Neither of the two cysteine residues was essential for basal 2-deoxy-D-glucose uptake in Xenopus oocytes expressing the respective mutant M421 and M429. If applied from the external side, the(More)
Proline residues are thought to play a characteristic structural and/or dynamic role in various membrane proteins [Williams, K.A. & Deber, C.M. (1991) Biochemistry 30, 8919-8923]. By use of site-directed mutagenesis and functional expression of mutant glucose transporters in Xenopus oocytes, we investigated the effects of single proline substitutions in the(More)
The tryptophan residues 388 and 412 in the glucose transporter GLUT1 were altered to leucine (L) by site-directed mutagenesis and were transiently expressed in COS-7 cells. As assessed by immunoblotting, comparable numbers of glucose transporters were present in plasma membranes from cells transfected with wild-type GLUT1, GLUT1-L388 or GLUT1-L412.(More)
It is generally assumed that enkephalinase A, a highly thiorphan-sensitive dipeptidylcarboxypeptidase cleaving the Gly-Phe bond during enkephalin degradation, is bound to the neuronal membrane. To clarify the localization of the enzyme, we used three neuron-like models (neuroblastoma cells N1E-115, bulk prepared neurons and neurons in primary culture) and(More)
Alanine scanning mutagenesis and the introduction of deletions and insertions were used to address the role of the large cytoplasmic loop in 2-deoxy-D-glucose (2-DOG) uptake by GLUT1 expressed in Xenopus oocytes. Alanine scanning mutagenesis of 29 amino acid residues that are identical or homologous in GLUT1 to GLUT4 demonstrated that the transport(More)
The functional consequences of an in vivo heterozygous insertion mutation in the human facilitated glucose transporter isoform 1 (GLUT1) gene were investigated. The resulting frameshift in exon 10 changed the primary structure of the C-terminus from 42 in native GLUT1 to 61 amino acid residues in the mutant. Kinetic studies on a patient's erythrocytes were(More)
To investigate local secondary structure of GLUT1, site-directed and cysteine-scanning mutagenesis were employed to probe p-chloromercuribenzenesulfonate sensitivity of flanking regions at the boundary of external loops (ELs) and transmembrane segments (TMs) and to check the compatibility of two alternative membrane topology models with the experimental(More)
In adipose and muscle cells, the glucose transporter isoform GLUT4 is mainly located in an intracellular, vesicular compartment from which it is translocated to the plasma membrane in response to insulin. In order to test the hypothesis that this preferential targeting of a glucose transporter to an intracellular storage site is conferred only by its(More)
Transmembrane segment 1 of the cysteine-less GLUT1 glucose transporter was subjected to cysteine-scanning mutagenesis. The majority of single-cysteine mutants were functional transporters, as assessed by 2-deoxy-d-glucose uptake or 3-O-methyl-d-glucose transport. Substitution of cysteine for Leu-21, Gly-22, Ser-23, Gln-25, and Gly-27, however, led to uptake(More)