Ingrid Fleming

Learn More
Nitric oxide (NO) produced by the endothelial NO synthase (eNOS) is a fundamental determinant of cardiovascular homesotasis: it regulates systemic blood pressure, vascular remodelling and angiogenesis. Physiologically, the most important stimulus for the continuous formation of NO is the viscous drag (shear stress) generated by the streaming blood on the(More)
In most arterial beds a significant endothelium-dependent dilation to various stimuli persists even after inhibition of nitric oxide synthase and cyclo-oxygenase. This dilator response is preceded by an endothelium-dependent hyperpolarization of vascular smooth muscle cells, which is sensitive to a combination of the calcium-dependent potassium-channel(More)
Endothelial cells synthesize and release vasoactive mediators in response to various neurohumoural substances (e.g. bradykinin or acetylcholine) and physical stimuli (e.g. cyclic stretch or fluid shear stress). The best-characterized endothelium-derived relaxing factors are nitric oxide and prostacyclin. However, an additional relaxant pathway associated(More)
The activity of the endothelial nitric oxide synthase (eNOS) can be regulated independently of an increase in Ca(2+) by the phosphorylation of Ser(1177) but results only in a low nitric oxide (NO) output. In the present study, we assessed whether the agonist-induced (Ca(2+)-dependent, high-output) activation of eNOS is associated with changes in the(More)
The endothelial nitric oxide synthase (eNOS), the expression of which is regulated by a range of transcriptional and posttranscriptional mechanisms, generates nitric oxide (NO) in response to a number of stimuli. The physiologically most important determinants for the continuous generation of NO and thus the regulation of local blood flow are fluid shear(More)
Endothelial cells situated at the interface between blood and the vessel wall play a crucial role in controlling vascular tone and homeostasis, particularly in determining the expression of pro- and anti-atherosclerotic genes. Many of these effects are mediated by changes in the generation and release of the vasodilator nitric oxide (NO) in response to(More)
In the porcine coronary artery, a cytochrome P450 (CYP) isozyme homologous to CYP 2C8/9 has been identified as an endothelium-derived hyperpolarizing factor (EDHF) synthase. As some CYP enzymes are reported to generate reactive oxygen species (ROS), we hypothesized that the coronary EDHF synthase may modulate vascular homeostasis by the simultaneous(More)
Aging is considered to be the major risk factor for the development of atherosclerosis and, therefore, for coronary artery disease. Apart from age-associated remodeling of the vascular wall, which includes luminal enlargement, intimal and medial thickening, and increased vascular stiffness, endothelial function declines with age. This is most obvious from(More)
BACKGROUND The contribution of the endothelium-derived hyperpolarizing factor (EDHF), proposed to be a cytochrome P450-derived metabolite of arachidonic acid, to endothelium-dependent dilatation under physiological conditions has yet to be established, because its effect can be detected only after inhibition of NO synthase and cyclooxygenase. The(More)
Consistent with its classification as a Ca2+/calmodulin-dependent enzyme the constitutive endothelial nitric oxide (NO) synthase (eNOS) can be activated by receptor-dependent and -independent agonists as a consequence of an increase in the intracellular concentration of free Ca2+ ([Ca2+]i) and the association of the Ca2+/calmodulin complex with eNOS.(More)