Learn More
Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer's disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are(More)
Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major(More)
Cross-sectional magnetic resonance imaging (MRI) studies of cortical thickness and volume have shown age effects on large areas, but there are substantial discrepancies across studies regarding the localization and magnitude of effects. These discrepancies hinder understanding of effects of aging on brain morphometry, and limit the potential usefulness of(More)
As the amygdala is part of the phylogenetic old brain, and its anatomical and functional properties are conserved across species, it is reasonable to assume genetic influence on its activity. A large corpus of candidate gene studies indicate that individual differences in amygdala activity may be caused by genetic variants within monoaminergic signaling(More)
Magnetic resonance imaging (MRI) is the principal method for studying structural age-related brain changes in vivo. However, previous research has yielded inconsistent results, precluding understanding of structural changes of the aging brain. This inconsistency is due to methodological differences and/or different aging patterns across samples. To overcome(More)
BACKGROUND Schizophrenia and bipolar disorder are severe psychiatric diseases with overlapping symptomatology. Widespread brain morphologic abnormalities, including cortical thinning and subcortical volume reductions, have been demonstrated in schizophrenia but it is unclear whether similar abnormalities are present in bipolar disorder. The purpose of this(More)
The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging(More)
Loss-of-function mutations in the genes associated with primary microcephaly (MCPH) reduce human brain size by about two-thirds, without producing gross abnormalities in brain organization or physiology and leaving other organs largely unaffected [Woods CG, et al. (2005) Am J Hum Genet 76:717-728]. There is also evidence suggesting that MCPH genes have(More)
BACKGROUND Magnetic resonance imaging studies have shown that structural brain abnormalities are present in both schizophrenia and bipolar disorder. Most previous studies have focused on brain tissue volumes, but advances in neuroimaging data processing have made it possible to separate cortical area and cortical thickness. The purpose of the present study(More)
Morphological abnormalities of the cerebral cortex have been reported in a number of MRI-studies in schizophrenia. Uncertainty remains regarding cause, mechanism and progression of the alterations. It has been suggested that antipsychotic medication reduces total gray matter volumes, but results are inconsistent. In the present study differences in regional(More)