#### Filter Results:

#### Publication Year

2001

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

#### Data Set Used

Learn More

In this article we study the generalization abilities of several classifiers of support vector machine (SVM) type using a certain class of kernels that we call universal. It is shown that the soft margin algorithms with universal kernels are consistent for a large class of classification problems including some kind of noisy tasks provided that the… (More)

—It is shown that various classifiers that are based on minimization of a regularized risk are universally consistent, i.e., they can asymptotically learn in every classification task. The role of the loss functions used in these algorithms is considered in detail. As an application of our general framework, several types of support vector machines (SVMs)… (More)

Although Gaussian RBF kernels are one of the most often used kernels in modern machine learning methods such as support vector machines (SVMs), little is known about the structure of their reproducing kernel Hilbert spaces (RKHSs). In this work we give two distinct explicit descriptions of the RKHSs corresponding to Gaussian RBF kernels and discuss some… (More)

One way to describe anomalies is by saying that anomalies are not concentrated. This leads to the problem of finding level sets for the data generating density. We interpret this learning problem as a binary classification problem and compare the corresponding classification risk with the standard performance measure for the density level problem. In… (More)

We show that support vector machines of the 1-norm soft margin type are universally consistent provided that the regularization parameter is chosen in a distinct manner and the kernel belongs to a specific class}the so-called universal kernels}which has recently been considered by the author. In particular it is shown that the 1-norm soft margin classifier… (More)

During the last years support vector machines (SVMs) have been successfully applied in situations where the input space X is not necessarily a subset of R d. Examples include SVMs for the analysis of histograms or colored images, SVMs for text classification and web mining, and SVMs for applications from computational biology using, e.g., kernels for trees… (More)

We describe polynomial–time algorithms that produce approximate solutions with guaranteed accuracy for a class of QP problems that are used in the design of support vector machine classifiers. These algorithms employ a two–stage process where the first stage produces an approximate solution to a dual QP problem and the second stage maps this approximate… (More)

We establish a new oracle inequality for kernel-based, regularized least squares regression methods , which uses the eigenvalues of the associated integral operator as a complexity measure. We then use this oracle inequality to derive learning rates for these methods. Here, it turns out that these rates are independent of the exponent of the regularization… (More)