Learn More
In this article we study the generalization abilities of several classifiers of support vector machine (SVM) type using a certain class of kernels that we call universal. It is shown that the soft margin algorithms with universal kernels are consistent for a large class of classification problems including some kind of noisy tasks provided that the(More)
—It is shown that various classifiers that are based on minimization of a regularized risk are universally consistent, i.e., they can asymptotically learn in every classification task. The role of the loss functions used in these algorithms is considered in detail. As an application of our general framework, several types of support vector machines (SVMs)(More)
Although Gaussian RBF kernels are one of the most often used kernels in modern machine learning methods such as support vector machines (SVMs), little is known about the structure of their reproducing kernel Hilbert spaces (RKHSs). In this work we give two distinct explicit descriptions of the RKHSs corresponding to Gaussian RBF kernels and discuss some(More)
One way to describe anomalies is by saying that anomalies are not concentrated. This leads to the problem of finding level sets for the data generating density. We interpret this learning problem as a binary classification problem and compare the corresponding classification risk with the standard performance measure for the density level problem. In(More)
We describe polynomial–time algorithms that produce approximate solutions with guaranteed accuracy for a class of QP problems that are used in the design of support vector machine classifiers. These algorithms employ a two–stage process where the first stage produces an approximate solution to a dual QP problem and the second stage maps this approximate(More)
We prove a new oracle inequality for support vector machines with Gaussian RBF kernels solving the regularized least squares regression problem. To this end, we apply the modulus of smoothness. With the help of the new oracle inequality we then derive learning rates that can also be achieved by a simple data-dependent parameter selection method. Finally, it(More)