Learn More
Anaerobic ammonium oxidation (anammox) is a recently discovered microbial pathway and a cost-effective way to remove ammonium from wastewater. Anammox bacteria have been described as obligate chemolithoautotrophs. However, many chemolithoautotrophs (i.e., nitrifiers) can use organic compounds as a supplementary carbon source. In this study, the effect of(More)
Cells of Nitrosomonas eutropha grown under anoxic conditions with hydrogen as electron donor and nitrite as electron acceptor were initially unable to oxidize ammonia (ammonium) and hydroxylamine when transferred to oxic conditions. Recovery of ammonia and hydroxylamine oxidation activity was dependent on the presence of NO2. Under oxic conditions, without(More)
Cells of Nitrosomonas eutropha strain N904 that were denitrifying under anoxic conditions with hydrogen as electron donor and nitrite as electron acceptor were unable to utilize ammonium (ammonia) as an energy source. The recovery of ammonia oxidation activity was dependent on the presence of NO2. Anaerobic ammonia oxidation activity was observed in a(More)
In the Completely Autotrophic Nitrogen removal Over Nitrite (CANON) process, aerobic and anaerobic ammonia oxidizing bacteria cooperate to remove ammonia in one oxygen-limited reactor. Kinetic studies, microsensor analysis, and fluorescence in situ hybridization on CANON biomass showed a partial differentiation of processes and organisms within and among(More)
Starved cells of Nitrosomonas europaea and further ammonia oxidizers were able to rapidly accumulate ammonium and hydroxylamine to an internal concentration of about 1 and 0.8 M, respectively. In kinetic studies, the uptake/accumulation rates for ammonium [3.1 mmol (g protein)(-1) min(-1)] and hydroxylamine [4.39 mmol (g protein)(-1) min(-1)] were(More)
The phenotypes of three different Nitrosomonas europaea strains--wild-type, nitrite reductase (NirK)-deficient and nitric oxide reductase (NorB)-deficient strains--were characterized in chemostat cell cultures, and the effect of nitric oxide (NO) on metabolic activities was evaluated. All strains revealed similar aerobic ammonia oxidation activities, but(More)
Recently, two fresh water species, " Candidatus Brocadia anammoxidans" and " Candidatus Kuenenia stuttgartiensis", and one marine species, " Candidatus Scalindua sorokinii", of planctomycete anammox bacteria have been identified. " Candidatus Scalindua sorokinii" was discovered in the Black Sea, and contributed substantially to the loss of fixed nitrogen.(More)
The anaerobic ammonia-oxidizing activity of the planctomycete Candidatus "Brocadia anammoxidans" was not inhibited by NO concentrations up to 600 ppm and NO2 concentrations up to 100 ppm. B. anammoxidans was able to convert (detoxify) NO, which might explain the high NO tolerance of this organism. In the presence of NO2, the specific ammonia oxidation(More)
The effect of acetylene ((14)C(2)H(2)) on aerobic and anaerobic ammonia oxidation by Nitrosomonas eutropha was investigated. Ammonia monooxygenase (AMO) was inhibited and a 27 kDa polypeptide (AmoA) was labelled during aerobic ammonia oxidation. In contrast, anaerobic, NO(2)-dependent ammonia oxidation (NO(2)/N(2)O(4) as oxidant) was not affected by(More)