Learn More
A fast, simplified potential-based approach is presented that estimates the protein-ligand binding affinity based on the given 3D structure of a protein-ligand complex. This general, knowledge-based approach exploits structural information of known protein-ligand complexes extracted from the Brookhaven Protein Data Bank and converts it into(More)
The fast identification of quality lead compounds in the pharmaceutical industry through a combination of high throughput synthesis and screening has become more challenging in recent years. Although the number of available compounds for high throughput screening (HTS) has dramatically increased, large-scale random combinatorial libraries have contributed(More)
Knowledge-based scoring functions have become accepted choices for fast scoring putative protein-ligand complexes according to their binding affinities. Since their introduction 5 years ago, the knowledge base of protein-ligand complexes has grown to the point were rederiving potentials of mean force becomes meaningful for statistical reasons. Revisiting(More)
A simple pharmacophore point filter has been developed that discriminates between drug-like and nondrug-like chemical matter. It is based on the observation that nondrugs are often underfunctionalized. Therefore, a minimum count of well-defined pharmacophore points is required to pass the filter. The application of the filter results in 66-69% of subsets of(More)
The ability to find novel bioactive scaffolds in compound similarity-based virtual screening experiments has been studied comparing Tanimoto-based, ranking-based, voting, and consensus scoring protocols. Ligand sets for seven well-known drug targets (CDK2, COX2, estrogen receptor, neuraminidase, HIV-1 protease, p38 MAP kinase, thrombin) have been assembled(More)
A new knowledge-based scoring function (PMF-score), implemented into the DOCK4 program, was used to screen a database of 3247 small molecules for binding to the FK506 binding protein (FKBP). The computational ranking of these compounds was compared to the binding affinities measured by NMR. It was demonstrated that small, weakly binding molecules have, on(More)
The effect of the reorganization of the protein polar groups on charge-charge interaction and the corresponding effective dielectric constant (epsilon(eff)) is examined by the semimicroscopic version of the Protein Dipole Langevin Dipoles (PDLD/S) method within the framework of the Linear Response Approximation (LRA). This is done by evaluating the(More)
Numerous selective estrogen receptor modulators (SERMs) have been synthesized and assayed in recent years. The focus of this study is to apply coarse-grain molecular docking procedures coupled with fine-grain all-atom force field optimization strategies to shed light on the binding mechanisms of currently available estrogen receptor-active compounds.(More)
Kinases have become a major area of drug discovery and structure-based design. Hundreds of 3D structures for more than thirty different kinases are available to the public. High structural and sequence homology within the kinase gene family makes the remaining kinases ideal targets for homology modeling and virtual screening. Somewhat surprisingly, however,(More)