Learn More
Reactive oxygen species (ROS) induce chemokines responsible for the recruitment of inflammatory cells to sites of injury or infection. Here we show that the plasma membrane Ca(2+)-permeable channel TRPM2 controls ROS-induced chemokine production in monocytes. In human U937 monocytes, hydrogen peroxide (H(2)O(2)) evokes Ca(2+) influx through TRPM2 to(More)
TRPM2 is a Ca2+-permeable cation channel that is specifically activated by adenosine diphosphoribose (ADPR). Channel activation in the plasma membrane leads to Ca2+ influx and has been linked to apoptotic mechanisms. The primary agonist, ADPR, is produced both extra- and intracellularly and causes increases in intracellular calcium concentration ([Ca2+]i),(More)
The Ca(2+)-permeable TRPM2 channel is a dual function protein that is activated by intracellular ADPR through its enzymatic pyrophosphatase domain with Ca(2+) acting as a co-factor. Other TRPM2 regulators include cADPR, NAADP and H(2)O(2), which synergize with ADPR to potentiate TRPM2 activation. Although TRPM2 has been thoroughly characterized in(More)
Ca(2+) signals through store-operated Ca(2+) (SOC) channels, activated by the depletion of Ca(2+) from the endoplasmic reticulum, regulate various physiological events. Orai1 is the pore-forming subunit of the Ca(2+) release-activated Ca(2+) (CRAC) channel, the best characterized SOC channel. Orai1 is activated by stromal interaction molecule (STIM) 1, a(More)
Chemokines induce calcium (Ca(2+)) signaling and chemotaxis in dendritic cells (DCs), but the molecular players involved in shaping intracellular Ca(2+) changes remain to be characterized. Using siRNA and knockout mice, we show that in addition to inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release and store-operated Ca(2+) entry (SOCE), the(More)
Store-operated Ca(2+) entry (SOCE) is a universal mechanism to increase intracellular Ca(2+) concentrations in non-excitable cells. It is initiated by the depletion of ER Ca(2+) stores, activation of stromal interaction molecule (STIM) 1 and gating of the Ca(2+) release activated Ca(2+) (CRAC) channel ORAI1 in the plasma membrane. We identified a minimal(More)
Neuroblastoma (NB) is the most common extracranial pediatric tumor. NB patients over 18 months of age at the time of diagnosis are often in the later stages of the disease, present with widespread dissemination, and often possess MYCN tumor gene amplification. MYCN is a transcription factor that regulates the expression of a number of genes including(More)
Ornithine decarboxylase (ODC) is the sentinel enzyme in polyamine biosynthesis. Both ODC and polyamines regulate cell division, proliferation, and apoptosis. Sepiapterin reductase (SPR) catalyzes the last step in the biosynthesis of tetrahydrobiopterin (BH4), an essential cofactor of nitric oxide synthase, and has been implicated in neurological diseases(More)
Neuroblastoma is an extra-cranial solid cancer in children. MYCN gene amplification is a prognostic indicator of poor outcome in neuroblastoma. Recent studies have shown that the multiple steps involved in cell migration are dependent on the availability of intracellular calcium (Ca(2+)). Although significant advances have been made in understanding the(More)
Reactive oxygen species (ROS) induce chemokines responsible for the recruitment of inflammatory cells to sites of injury or infection. Here we show that the plasma membrane Ca 2+-permeable channel TRPM2 controls ROS-induced chemokine production in monocytes. In human U937 monocytes, hydrogen peroxide (H 2 O 2) evokes Ca 2+ influx through TRPM2 to activate(More)