Ingo Hilschenz

Learn More
A number of different methods have been developed in order to detect the spreading of neuronal currents by means of noninvasive imaging techniques. However, all of these are subjected to limitations in the temporal or spatial resolution. A new approach of neuronal current detection is based on the use of low-field nuclear magnetic resonance (LF-NMR) that(More)
Within the magnetic resonance imaging (MRI) community the trend is going to higher and higher magnetic fields, ranging from 1.5 T to 7 T, corresponding to Larmor frequencies of 63.8-298 MHz. Since for high-field MRI the magnetization increases with the applied magnetic field, the signal-to-noise-ratio increases as well, thus enabling higher image(More)
Magnetoencephalography measurements of somatosensory evoked brain activity taken inside an extremely magnetically shielded room are reported. The massive low frequency shielding in combination with a high sampling rate enabled the simultaneous observation of AC and near-DC effects. Neuronal activation was achieved by repetitive electrostimulation of the(More)
  • 1