Learn More
The assembly of AMPA-type glutamate receptors (AMPARs) into distinct ion channel tetramers ultimately governs the nature of information transfer at excitatory synapses. How cells regulate the formation of diverse homo- and heteromeric AMPARs is unknown. Using a sensitive biophysical approach, we show that the extracellular, membrane-distal AMPAR N-terminal(More)
AMPA-receptor (AMPAR) transport to synapses plays a critical role in the modulation of synaptic strength. We show that the functionally critical GluR2 subunit stably resides in an intracellular pool in the endoplasmic reticulum (ER). GluR2 in this pool is extensively complexed with GluR3 but not with GluR1, which is mainly confined to the cell surface.(More)
The subunit composition determines AMPA receptor (AMPA-R) function and trafficking. Mechanisms underlying channel assembly are thus central to the efficacy and plasticity of glutamatergic synapses. We previously showed that RNA editing at the Q/R site of the GluR2 subunit contributes to the assembly of AMPA-R heteromers by attenuating formation of GluR2(More)
Ionotropic glutamate receptors (iGluRs) mediate excitatory neurotransmission in the central nervous system and play key roles in brain development and disease. iGluRs have two distinct extracellular domains, but the functional role of the distal N-terminal domain (NTD) is poorly understood. Crystal structures of the NTD from some non-N-methyl-d-aspartate(More)
AMPA-type (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate) glutamate receptors (AMPARs) mediate post-synaptic depolarization and fast excitatory transmission in the central nervous system. AMPARs are tetrameric ion channels that assemble in the endoplasmic reticulum (ER) in a poorly understood process. The subunit composition determines channel(More)
AMPA-type glutamate receptors (AMPARs) mediate fast neurotransmission at excitatory synapses. The extent and fidelity of postsynaptic depolarization triggered by AMPAR activation are shaped by AMPAR auxiliary subunits, including the transmembrane AMPAR regulatory proteins (TARPs). TARPs profoundly influence gating, an effect thought to be mediated by an(More)
Adenosine-to-Inosine (A-to-I) RNA editing is a post-transcriptional mechanism, evolved to diversify the transcriptome in metazoa. In addition to wide-spread editing in non-coding regions protein recoding by RNA editing allows for fine tuning of protein function. Functional consequences are only known for some editing sites and the combinatorial effect(More)
Glutamate-gated ion channels (ionotropic glutamate receptors, iGluRs) sense the extracellular milieu via an extensive extracellular portion, comprised of two clamshell-shaped segments. The distal, N-terminal domain (NTD) has allosteric potential in NMDA-type iGluRs, which has not been ascribed to the analogous domain in AMPA receptors (AMPARs). In this(More)
AMPA-type glutamate receptors (AMPARs), which are central mediators of rapid neurotransmission and synaptic plasticity, predominantly exist as heteromers of the subunits GluA1 to GluA4. Here we report the first AMPAR heteromer structures, which deviate substantially from existing GluA2 homomer structures. Crystal structures of the GluA2/3 and GluA2/4(More)
AMPA-type glutamate receptors (AMPARs) play a major role in excitatory synaptic transmission and plasticity. Channel properties are largely dictated by their composition of the four subunits, GluR1-4 (or A-D). Here we show that AMPAR assembly and subunit stoichiometry are determined by RNA editing in the pore loop. We demonstrate that editing at the GluR2(More)