Learn More
Treatment of chronic myeloid leukemia (CML) with the tyrosine kinase inhibitor imatinib represents a successful application of molecularly targeted cancer therapy. A rapid hematologic and cytogenetic response can be induced in the majority of people, even in advanced disease. However, complete eradication of malignant cells, which are characterized by the(More)
Wireless multi-hop ad hoc communication networks represent an infrastructure-less and self-organized generalization of todays wireless cellular networks. Connectivity within such a network is an important issue. Continuum percolation and technology-driven mutations thereof allow to address this issue in the static limit and to construct a simple distributed(More)
Cardiac-resident stem/progenitor cells have been identified based on expression of stem cell-associated antigens. However, no single surface marker allows to identify a definite cardiac stem/progenitor cell entity. Hence, functional stem cell markers have been extensively searched for. In homeostatic systems, stem cells divide infrequently and therefore(More)
Mathematical models and simulation studies are powerful tools to investigate dynamic properties of complex systems. Specifically, they can be used to test alternative hypotheses on underlying biological mechanisms for their consistency with real data and therefore to effectively guide the design of new experimental strategies or clinical trials. In this(More)
Mouse embryonic stem cells (mESCs) can be maintained in a proliferative and undifferentiated state over many passages (self-renewal) while retaining the potential to give rise to every cell type of the organism (pluripotency). Autocrine FGF4/Erk signalling has been identified as a major stimulus for fate decisions and lineage commitment in these cells.(More)
The interplay between hematopoietic stem and progenitor cells (HSPC) and their local microenvironment is a key mechanism for the organization of hematopoiesis. To quantitatively study this process, a time-resolved analysis of cellular dynamics at the single-cell level is an essential prerequisite. One way to generate sufficient amounts of appropriate data(More)
Molecular response to imatinib (IM) in chronic myeloid leukemia (CML) is associated with a biphasic but heterogeneous decline of BCR-ABL transcript levels. We analyzed this interindividual heterogeneity and provide a predictive mathematical model to prognosticate the long-term response and the individual risk of molecular relapse on treatment cessation. The(More)
In addition to their self-renewal capabilities, hematopoietic stem cells guarantee the continuous supply of fully differentiated, functional cells of various types in the peripheral blood. The process which controls differentiation into the different lineages of the hematopoietic system (erythroid, myeloid, lymphoid) is referred to as lineage specification.(More)
The expression of the transcription factors Oct4, Sox2, and Nanog is commonly associated with pluripotency of mouse embryonic stem (ES) cells. However, recent observations suggest that ES cell populations are heterogeneous with respect to the expression of Nanog and that individual ES cells reversibly change their Nanog expression level. Furthermore, it has(More)
The tyrosine kinase (TK) inhibitor imatinib provides a highly effective therapy for chronic myeloid leukemia (CML) via inhibition of the oncogenic TK BCR-ABL1. However, off-target TKs like platelet-derived growth factor receptors (PDGF-R) and colony-stimulating factor-1 receptor (c-fms), involved in bone remodeling, are also inhibited. Thus, pediatric(More)