Inger Lill Anthonisen

Learn More
In March 2012, a second outbreak of Cryptosporidium parvum affected children following a stay at a holiday farm in Norway; the first outbreak occurred in 2009. We studied a cohort of 145 schoolchildren who had visited the farm, of which 40 (28%) were cases. Cryptosporidium oocysts were detected in faecal samples from humans, goat kids and lambs. Molecular(More)
Using a series of point mutations in chimeric reporter gene constructs consisting of the 5' regions of the Chlamydomonas chloroplast rbcL or atpB genes fused 5' to the coding sequence of the bacterial uidA (GUS) gene, RNA-stabilizing sequence elements were identified in vivo in the 5' untranslated regions (5' UTRs) of transcripts of the chloroplast genes(More)
The most important mechanism for beta-lactam resistance in beta-lactamase-negative ampicillin-resistant (BLNAR) isolates of Haemophilus influenzae is the alteration of penicillin-binding protein 3 (PBP3) as a result of ftsI gene mutations. The present study aimed to map PBP3 alterations and to determine the correlation to beta-lactam resistance in(More)
Beta-lactam resistance in Haemophilus influenzae due to ftsI mutations causing altered penicillin-binding protein 3 (PBP3) is increasing worldwide. Low-level resistant isolates with the N526K substitution (group II low-rPBP3) predominate in most geographical regions, while high-level resistant isolates with the additional S385T substitution (group III(More)
Resistance to cephalosporins in Haemophilus influenzae is usually caused by characteristic alterations in penicillin-binding protein 3 (PBP3), encoded by the ftsI gene. Resistance to extended-spectrum cephalosporins is associated with high-level PBP3-mediated resistance (high-rPBP3), defined by the second stage S385T substitution in addition to a first(More)
Using uidA (β-glucuronidase; GUS) reporter gene constructs, the 5′-untranslated region (UTR) of the Chlamydomonas chloroplast rbcL gene was screened by deletion and mutational analysis for the presence of a promoter element that previous studies implied to reside within the first 63 base pairs of the UTR. Deleting a large segment of the rbcL 5′UTR in a(More)
The structure and function of a transcription-enhancing sequence element in the coding region of the Chlamydomonas reinhardtii rbcL gene was analyzed in Chlamydomonas chloroplast transformants in vivo. The enhancer sequence is contained within a DNA segment extending from position +108 to position +143, relative to the start site of rbcL gene transcription.(More)
  • 1