Ingeborg Vogel

Learn More
Regulation of intestinal motility depends on an intact synaptic vesicle apparatus. Thus, we investigated the expression of the synaptic vesicle markers synaptophysin and synaptobrevin in the human enteric nervous system (ENS) and their regulation by glial cell line-derived neurotrophic factor (GDNF) in cultured enteric neurons. Full-thickness specimens of(More)
Gephyrin is a scaffolding protein required for the accumulation of inhibitory neurotransmitter receptors at neuronal postsynaptic membranes. In non-neuronal tissues, gephyrin is indispensible for the biosynthesis of molybdenum cofactor, the prosthetic group of oxidoreductases including sulfite oxidase and xanthine oxidase. However, the molecular and(More)
Overexpression of p53 correlates with neoplasia in many cytological specimens. To test the specificity of overexpressed p53 as a tumour marker for the detection of pancreatic cancer, we analysed cytological specimens of pancreatic juice samples from patients with pancreatitis or pancreatic carcinoma (n = 42) for p53 protein overexpression. p53 protein(More)
Control of intestinal motility requires an intact enteric neurotransmission. Synaptosomal-associated protein 25 (SNAP-25) is an essential component of the synaptic vesicle fusion machinery. The aim of the study was to investigate the localization and expression of SNAP-25 in the human intestine and cultured enteric neurons and to assess its regulation by(More)
  • 1