Inge Heulens

Learn More
After our initial discovery of reduced expression of several subunits of the GABA(A) receptor in two different animal models for fragile X syndrome, a frequent form of inherited mental retardation, we analyzed further components of the GABAergic pathway. Interestingly, we found a down regulation of many additional elements of the GABA signalling system,(More)
A dynamic mutation in the fragile X mental retardation 1 gene, FMR1, was found to cause fragile X syndrome almost 20 years ago. Since, a wealth of information regarding the function of the gene has been gathered. It plays a role in RNA transport and stability and RNA-binding influences the function of a multitude of other genes. In this review, we focus on(More)
Previous research indicates that the GABAAergic system is involved in the pathophysiology of the fragile X syndrome, a frequent form of inherited intellectual disability and associated with autism spectrum disorder. However, the molecular mechanism underlying GABAAergic deficits has remained largely unknown. Here, we demonstrate reduced mRNA expression of(More)
For a disorder as common as fragile X syndrome, the most common hereditary form of cognitive impairment, the facial features are relatively ill defined. An elongated face and prominent ears are the most commonly accepted dysmorphic hallmarks. We analysed 3D facial photographs of 51 males and 15 females with full FMR1 mutations and 9 females with a(More)
Hypotonia–cystinuria syndrome (HCS) is a recessive disorder caused by microdeletions of SLC3A1 and PREPL on chromosome 2p21. Patients present with generalized hypotonia at birth, failure to thrive, growth retardation and cystinuria type I. While the initially described HCS families live in small regions in Belgium and France, we have now identified HCS(More)
Molecular and electrophysiological studies have provided evidence for a general downregulation of the GABAergic system in the Fmr1 knockout mouse. GABA(A) receptors are the main inhibitory receptors in the brain and the GABA(A) receptor was proposed as a novel target for treatment of the fragile X syndrome, the most frequent form of intellectual disability.(More)
Many drugs have been developed that are able to modulate the GABAergic system, which is involved in anxiety, depression, epilepsy, insomnia, and learning and memory. The recent observation that the GABA(A) receptor is underexpressed in the fragile X syndrome, an inherited mental retardation disorder, therefore raised hopes for targeted therapy of the(More)
Over the last several years, evidence has accumulated that the GABAA receptor is compromised in animal models for fragile X syndrome (FXS), a common hereditary form of intellectual disability. In mouse and fly models, agonists of the GABAA receptor were able to rescue specific consequences of the fragile X mutation. Here, we imaged and quantified GABAA(More)
Fragile X syndrome is the most common cause of inherited intellectual disability, but the underlying pathophysiology is complex and effective treatments are lacking. In a recent study of fragile X mental retardation 1 (Fmr1) knockout mice, the metabolic profile of the fragile X brain was determined using proton high-resolution magic angle spinning nuclear(More)
  • 1