Ing-Guey Jiang

  • Citations Per Year
Learn More
The bright F8 V solar-type star upsilon Andromedae has recently been reported to have a system of three planets of Jovian masses. In order to investigate the orbital stability and mutual gravitational interactions among these extrasolar planets, both forward and backward integrations from the latest observed orbital elements for all three planets’ orbits(More)
Using the period and mass data of two hundred and seventy-nine extrasolar planets, we have constructed a coupled period-mass function through the non-parametric approach. This analytic expression of the coupled period-mass function has been obtained for the first time in this field. Moreover, due to a moderate period-mass correlation, the shapes of(More)
The observational properties of brown dwarfs pose challenges to the theory of star formation. Because their mass is much smaller than the typical Jeans mass of interstellar clouds, brown dwarfs are most likely formed through secondary fragmentation processes, rather than through the direct collapse of a molecular cloud core. In order to prevent substantial(More)
The orbital evolution and stability of planetary systems with interaction from the belts is studied using the standard phase-plane analysis. In addition to the fixed point which corresponds to the Keplerian orbit, there are other fixed points around the inner and outer edges of the belt. Our results show that for the planets, the probability to move stably(More)
It is known that the discs are detected for some of the extra-solar planetary systems. It is also likely that there was a disc mixing with planets and small bodies while our Solar System was forming. From our recent results, we conclude that the discs play two roles: the gravity makes planetary systems more chaotic and the drag makes planetary systems more(More)