Learn More
Insulin-like growth factor-1 (IGF1) and its active peptide (1-3)IGF1 modulate brain growth and plasticity and are candidate molecules for treatment of brain disorders. IGF1 N-terminal portion is naturally cleaved to generate the tri-peptide (1-3)IGF1 (glycine-praline-glutamate). IGF1 and (1-3)IGF have been proposed as treatment for neuropathologies, yet(More)
Major neuropsychiatric disorders are genetically complex but share overlapping etiology. Mice mutant for rare, highly penetrant risk variants can be useful in dissecting the molecular mechanisms involved. The gene disrupted in schizophrenia 1 (DISC1) has been associated with increased risk for neuropsychiatric conditions. Mice mutant for Disc1 display(More)
Identifying rare, highly penetrant risk mutations may be an important step in dissecting the molecular etiology of schizophrenia. We conducted a gene-based analysis of large (>100 kb), rare copy-number variants (CNVs) in the Wellcome Trust Case Control Consortium 2 (WTCCC2) schizophrenia sample of 1564 cases and 1748 controls all from Ireland, and further(More)
Methyl-CpG binding protein 2 (MECP2) is a chromosome-binding protein that regulates the development and maintenance of brain circuits. Altered function of the protein product of MECP2 plays an important role in the etiology of many neurodevelopmental disorders. Mutations involving a loss of function are implicated in the etiology of Rett syndrome,(More)
Identifying rare, highly penetrant risk mutations may be an important step in dissecting the molecular etiology of schizophrenia. We conducted a gene-based analysis of large (>100kb), rare copy number variants (CNVs) in the Wellcome Trust Case Control Consortium 2 (WTCCC2) schizophrenia sample of 1,564 cases and 1,748 controls all from Ireland, and further(More)
  • 1