#### Filter Results:

#### Publication Year

2014

2017

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

Nonnegative matrix factorization (NMF) is the problem of decomposing a given nonnegative n × m matrix M into a product of a nonnegative n × d matrix W and a nonnegative d × m matrix H. Restricted NMF requires in addition that the column spaces of M and W coincide. Finding the minimal inner dimension d is known to be NP-hard, both for NMF and restricted NMF.… (More)

Nonnegative matrix factorization (NMF) is the problem of decomposing a given nonnegative n × m matrix M into a product of a nonnegative n × d matrix W and a nonnegative d × m matrix H. A longstanding open question, posed by Cohen and Rothblum in 1993, is whether a rational matrix M always has an NMF of minimal inner dimension d whose factors W and H are… (More)

We consider the problem of minimising the number of states in a multiplicity tree automaton over the field of rational numbers. We give a minimisation algorithm that runs in polynomial time assuming unit-cost arithmetic. We also show that a polynomial bound in the standard Turing model would require a breakthrough in the complexity of polynomial identity… (More)

We consider the complexity of equivalence and learning for multiplicity tree automata, i.e., weighted tree automata over a field. We first show that the equivalence problem is logspace equivalent to polynomial identity testing, the complexity of which is a longstanding open problem. Secondly, we derive lower bounds on the number of queries needed to learn… (More)

- ‹
- 1
- ›