Indumathi Sridharan

Learn More
The lineage selection in human embryonic stem cell (hESC) differentiation relies on both the growth factors and small molecules in the media and the physical characteristics of the micro-environment. In this work, we utilized various materials, including the collagen-carbon nanotube (collagen/CNT) composite material, as cell culture matrices to examine the(More)
To create suitable biological scaffolds for tissue engineering and cell therapeutics, it is essential to understand the matrix-mediated specification of stem cell differentiation. To this end, we studied the effect of collagen type I on stem cell lineage specification. We altered the properties of collagen type I by incorporating carbon nanotubes (CNT). The(More)
The local expression and distribution pattern of protein on a cell play essential roles in signal transduction within a cell or between cells. Here we report on the development of a spatially resolved quantification method, which was applied in the study of E-cadherin local expression in identified undifferentiated and differentiated human embryonic stem(More)
Collagen is a native one-dimensional nanomaterial. Carbon nanotube (CNT) was found to interface with biological materials and show promising applications in creating reinforced scaffolds for tissue engineering and regenerative medicine. In this study, we examined the unique role of CNT in collagen fiber structure, mechanical strength and assembly kinetics.(More)
The heterogeneity found in many cell types has greatly inspired research in single-cell gene and protein profiling for discovering the origin of heterogeneity and its role in cell fate decisions. Among the existing techniques to probe heterogeneity, atomic force microscopy (AFM) utilizes an antibody/ligand-modified tip to explore the distribution of a(More)
Collagen, an ubiquitous biomaterial, confers robustness and resilience to connective tissues. In this study, we analyzed the structure and elasticity profile of collagen from the vaginal wall connective tissue of healthy pre-menopausal (pre-M) and postmenopausal (post-M) women. The histological staining assisted study with an atomic force microscope renders(More)
UNLABELLED Pelvic organ prolapse (POP) is characterized by weakening of the connective tissues and loss of support for the pelvic organs. Collagen is the predominant, load-bearing protein within pelvic floor connective tissues. In this study, we examined the nanoscopic structures and biomechanics of native collagen fibrils in surgical, vaginal wall(More)
  • 1