Indu R. Chandrashekaran

Learn More
Suppressors of cytokine signaling (SOCS) proteins function as negative regulators of cytokine signaling and are involved in fine tuning the immune response. The structure and role of the SH2 domains and C-terminal SOCS box motifs of the SOCS proteins are well characterized, but the long N-terminal domains of SOCS4-7 remain poorly understood. Here, we(More)
Suppressor of Cytokine Signaling (SOCS)5 is thought to act as a tumour suppressor through negative regulation of JAK/STAT and epidermal growth factor (EGF) signaling. However, the mechanism/s by which SOCS5 acts on these two distinct pathways is unclear. We show for the first time that SOCS5 can interact directly with JAK via a unique, conserved region in(More)
Merozoite surface protein 2 (MSP2) is a glycosylphosphatidylinositol (GPI)-anchored protein expressed abundantly on the surface of Plasmodium falciparum merozoites. The results of a phase 2 trial in Papua New Guinean children showed MSP2 to be a promising malaria vaccine candidate. MSP2 is intrinsically unstructured and forms amyloid-like fibrils under(More)
Merozoite surface protein 2 (MSP2), one of the most abundant proteins on the surface of Plasmodium falciparum merozoites, is a promising malaria vaccine candidate. MSP2 is intrinsically unstructured and forms amyloid-like fibrils in solution. As this propensity of MSP2 to form fibrils in solution has the potential to impede its development as a vaccine(More)
SOCS5 can negatively regulate both JAK/STAT and EGF-receptor pathways and has therefore been implicated in regulating both the immune response and tumorigenesis. Understanding the molecular basis for SOCS5 activity may reveal novel ways to target key components of these signaling pathways. The N-terminal region of SOCS5 coordinates critical protein(More)
(19)F-NMR has proved to be a valuable tool in fragment-based drug discovery. Its applications include screening libraries of fluorinated fragments, assessing competition among elaborated fragments and identifying the binding poses of promising hits. By observing fluorine in both the ligand and the target protein, useful information can be obtained on not(More)
We have identified a class of molecules, known as 2-aminothiazoles (2-ATs), as frequent-hitting fragments in biophysical binding assays. This was exemplified by 4-phenylthiazol-2-amine being identified as a hit in 14/14 screens against a diverse range of protein targets, suggesting that this scaffold is a poor starting point for fragment-based drug(More)
Merozoite surface protein 2 (MSP2) is a GPI-anchored protein on the surface of the merozoite stage of the malaria parasite Plasmodium falciparum. It is largely disordered in solution, but has a propensity to form amyloid-like fibrils under physiological conditions. The N-terminal conserved region (MSP2(1-25)) is part of the protease-resistant core of these(More)
Insulin-like growth factor binding proteins (IGFBPs) modulate the activity and distribution of insulin-like growth factors (IGFs). IGFBP-6 differs from other IGFBPs in being a relatively specific inhibitor of IGF-II actions. Another distinctive feature of IGFBP-6 is its unique N-terminal disulfide linkages; the N-domains of IGFBPs 1-5 contain six disulfides(More)
Apical membrane antigen 1 (AMA1) interacts with RON2 to form a protein complex that plays a key role in the invasion of host cells by malaria parasites. Blocking this protein-protein interaction represents a potential route to controlling malaria and related parasitic diseases, but the polymorphic nature of AMA1 has proven to be a major challenge to(More)