Indra Sari Kusuma Harahap

Learn More
The uridine diphosphoglucuronate-glucuronosyltransferase 1A1 (UGT1A1) gene encodes the enzyme responsible for bilirubin glucuronidation. To evaluate the contribution of UGT1A1 promoter mutations to neonatal jaundice, we determined the genotypes of c.-3279T>G, c.-3156G>A, and A(TA)7TAA in Malay infants with neonatal jaundice (patients) and in infants without(More)
Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disorder that is caused by loss of the survival motor neuron gene, SMN1. SMA treatment strategies have focused on production of the SMN protein from the almost identical gene, SMN2. Valproic acid (VPA) is a histone deacetylase inhibitor that can increase SMN levels in some SMA cells(More)
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by epilepsy, mental retardation, skin lesions, and tumors in various organs. However, TSC is sometimes difficult to diagnose because of its broad phenotypic spectrum. In such cases, it is essential to find a mutation in the disease-causing genes, TSC1 and TSC2. In this study,(More)
Generalized epilepsy with febrile seizures plus (GEFS+) is a childhood genetic epilepsy syndrome. GEFS+ includes a wide spectrum of clinical manifestations, and SCN1A mutations have frequently been reported among the GEFS+-related gene abnormalities. In this study, to clarify the distributions of the clinical subtypes, we analyzed 34 families with GEFS+ in(More)
Licorice ingestion, as well as mutations in the HSD11B2 gene, inhibits 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) enzyme activity, causing the syndrome of apparent mineral corticoid excess (AME). However, the combined effect of licorice ingestion and an HSD11B2 mutation has never been reported, until now. In this study, we demonstrated that licorice(More)
AIM Spinal muscular atrophy (SMA) is a well-defined autosomal recessive neuromuscular disorder caused by mutations in the survival motor neuron 1 (SMN1) gene. The most frequently observed mutation is a deletion of exon 7, which has been documented in >95% of SMA patients. A novel technique for detecting mutations known as high-resolution melting analysis(More)
BACKGROUND Paramyotonia congenita (PMC) is an autosomal dominant disorder characterized by cold- or exercise-induced myotonia. PMC is caused by a mutation in SCN4A which encodes the α-subunit of the skeletal muscle sodium channel. METHODS The patient was an 11-year-old Japanese girl who was diagnosed as having PMC. To confirm the diagnosis, an orbital(More)
The patient was an 8-year-old Japanese girl with Gilbert's syndrome (GS). Based on the DNA analysis, she was homozygous for a T-to-G transversion at nucleotide position 1456 in the UGT1A1 gene, leading to the substitution of aspartate for tyrosine at position 486 of the UGT1A1 enzyme. Because this mutation is located in an exon common to UGT1A genes, all(More)
BACKGROUND Attention Deficit/Hyperactivity Disorder (ADHD) is a common neurobehavioral problem in children throughout the world. The Stroop test has been widely used for the evaluation of ADHD symptoms. However, the age-related change of the Stroop test results has not been fully clarified until now. METHODS Sixty-five ADHD and 70 age-matched control(More)
AIM Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disorder. It is caused by mutations in the SMN1, and its clinical severity is modified by copy number variations of the SMN2. According to previous studies, deletion of SMN1 exon 7 is the most frequently observed in patients with SMA. Therefore, molecular analyses exploiting(More)
  • 1