Indira D Munagala

Learn More
The analysis of patient blood transcriptional profiles offers a means to investigate the immunological mechanisms relevant to human diseases on a genome-wide scale. In addition, such studies provide a basis for the discovery of clinically relevant biomarker signatures. We designed a strategy for microarray analysis that is based on the identification of(More)
Understanding the developmental mechanisms of follicular helper T cells (TFH cells) in humans is relevant to the clinic. However, the factors that drive the differentiation of human CD4+ helper T cells into TFH cells remain largely undefined. Here we found that transforming growth factor-β (TGF-β) provided critical additional signals for the transcription(More)
Patients with HIV-associated tuberculosis (TB) initiating antiretroviral therapy (ART) may develop immune reconstitution inflammatory syndrome (TB-IRIS). No biomarkers for TB-IRIS have been identified and the underlying mechanisms are unclear. Here we perform transcriptomic profiling of the blood samples of patients with HIV-associated TB. We identify(More)
About half of all subjects with common variable immune deficiency (CVID) are afflicted with inflammatory complications including hematologic autoimmunity, granulomatous infiltrations, interstitial lung disease, lymphoid hyperplasia and/or gastrointestinal inflammatory disease. The pathogenesis of these conditions is poorly understood but singly and in(More)
The nonerythrocyte isoform of the cytoskeletal protein 4.1R (4.1R) is associated with morphologically dynamic structures during cell division and has been implicated in mitotic spindle function. In this study, we define important 4.1R isoforms expressed in interphase and mitotic cells by RT-PCR and mini-cDNA library construction. Moreover, we show that 4.1R(More)
The tightly regulated production of distinct erythrocyte protein 4.1R isoforms involves differential splicing of 3 mutually exclusive first exons (1A, 1B, 1C) to the alternative 3' splice sites (ss) of exon 2'/2. Here, we demonstrate that exon 1 and 2'/2 splicing diversity is regulated by a transcription-coupled splicing mechanism. We also implicate(More)
Understanding the developmental mechanisms of T follicular helper (TFH) cells in humans is a highly relevant topic to clinic. However, factors that drive human CD4+ helper T (TH) cell differentiation program towards TFH cells remain largely undefined. Here we show that TGF-β provides critical additional signals for the transcription factors STAT3 and STAT4(More)
  • 1