Indika Rajapakse

Learn More
The ability to measure human aging from molecular profiles has practical implications in many fields, including disease prevention and treatment, forensics, and extension of life. Although chronological age has been linked to changes in DNA methylation, the methylome has not yet been used to measure and compare human aging rates. Here, we build a(More)
Although the importance of chromosome organization during mitosis is clear, it remains to be determined whether the nucleus assumes other functionally relevant chromosomal topologies. We have previously shown that homologous chromosomes have a tendency to associate during hematopoiesis according to their distribution of coregulated genes, suggesting(More)
Bipolar disorder (BP) is a chronic psychiatric condition characterized by dynamic, pathological mood fluctuations from mania to depression. To date, a major challenge in studying human neuropsychiatric conditions such as BP has been limited access to viable central nervous system tissue to examine disease progression. Patient-derived induced pluripotent(More)
Unraveling the nature of genetic interactions is crucial to obtaining a more complete picture of complex diseases. It is thought that gene-gene interactions play an important role in the etiology of cancer, cardiovascular, and immune-mediated disease. Interactions among genes are defined as phenotypic effects that differ from those observed for independent(More)
The 4D organization of the interphase nucleus, or the 4D Nucleome (4DN), reflects a dynamical interaction between 3D genome structure and function and its relationship to phenotype. We present initial analyses of the human 4DN, capturing genome-wide structure using chromosome conformation capture and 3D imaging, and function using RNA-sequencing. We(More)
The heterogenic nature of troponin T (TnT) isoforms in fast skeletal and cardiac muscle suggests important functional differences. Dynamic features of rat cardiac TnT (cTnT) and rat fast skeletal TnT (fsTnT) reconstituted cardiac muscle preparations were captured by fitting the force response of small amplitude (0.5%) muscle length changes to the(More)
Although the nonrandom nature of interphase chromosome arrangement is widely accepted, how nuclear organization relates to genomic function remains unclear. Nuclear subcompartments may play a role by offering rich microenvironments that regulate chromatin state and ensure optimal transcriptional efficiency. Technological advances now provide genome-wide and(More)
Next-generation DNA sequencing platforms provide exciting new possibilities for in vitro genetic analysis of functional nucleic acids. However, the size of the resulting data sets presents computational and analytical challenges. We present an open-source software package that employs a locality-sensitive hashing algorithm to enumerate all unique sequences(More)
Cardiac troponin T (cTnT) is an essential component of the thin filament regulatory unit (RU) that regulates Ca2+ activation of tension in the heart muscle. Because there is coupling between the RU and myosin crossbridges, the functional outcome of cardiomyopathy-related mutations in cTnT may be modified by the type of myosin heavy chain (MHC) isoform. Ca2+(More)
A state-dependent dynamic network is a collection of elements that interact through a network, whose geometry evolves as the state of the elements changes over time. The genome is an intriguing example of a state-dependent network, where chromosomal geometry directly relates to genomic activity, which in turn strongly correlates with geometry. Here we(More)