Learn More
MOTIVATION A major challenge of systems biology is to infer biochemical interactions from large-scale observations, such as transcriptomics, proteomics and metabolomics. We propose to use a partial correlation analysis to construct approximate Undirected Dependency Graphs from such large-scale biochemical data. This approach enables a distinction between(More)
Genetic analysis of gene expression in a segregating population, which is expression profiled and genotyped at DNA markers throughout the genome, can reveal regulatory networks of polymorphic genes. We propose an analysis strategy with several steps: (1) genome-wide QTL analysis of all expression profiles to identify eQTL confidence regions, followed by(More)
Age-related variations in DNA methylation have been reported; however, the functional relevance of these differentially methylated sites (age-dMS) are unclear. Here we report potentially functional age-dMS, defined as age- and cis-gene expression-associated methylation sites (age-eMS), identified by integrating genome-wide CpG methylation and gene(More)
Our goal is gene network inference in genetical genomics or systems genetics experiments. For species where sequence information is available, we first perform expression quantitative trait locus (eQTL) mapping by jointly utilizing cis-, cis-trans-, and trans-regulation. After using local structural models to identify regulator-target pairs for each eQTL,(More)
BACKGROUND High throughput methods, such as high density oligonucleotide microarray measurements of mRNA levels, are popular and critical to genome scale analysis and systems biology. However understanding the results of these analyses and in particular understanding the very wide range of levels of transcriptional changes observed is still a significant(More)
SUMMARY SysGenSIM is a software package to simulate Systems Genetics (SG) experiments in model organisms, for the purpose of evaluating and comparing statistical and computational methods and their implementations for analyses of SG data [e.g. methods for expression quantitative trait loci (eQTL) mapping and network inference]. SysGenSIM allows the user to(More)
The joint action of multiple genes is an important source of variation for complex traits and human diseases. However, mapping genes with epistatic effects and gene-environment interactions is a difficult problem because of relatively small sample sizes and very large parameter spaces for quantitative trait locus models that include such interactions. Here(More)
In most QTL mapping studies, phenotypes are assumed to follow normal distributions. Deviations from this assumption may lead to detection of false positive QTL. To improve the robustness of Bayesian QTL mapping methods, the normal distribution for residuals is replaced with a skewed Student-t distribution. The latter distribution is able to account for both(More)
Currently, linear mixed model analyses of expression microarray experiments are performed either in a gene-specific or global mode. The joint analysis provides more flexibility in terms of how parameters are fitted and estimated and tends to be more powerful than the gene-specific analysis. Here we show how to implement the gene-specific linear mixed model(More)
Simulated data were used to investigate the influence of the choice of priors on estimation of genetic parameters in multivariate threshold models using Gibbs sampling. We simulated additive values, residuals and fixed effects for one continuous trait and liabilities of four binary traits, and QTL effects for one of the liabilities. Within each of four(More)