In-tae Hwang

  • Citations Per Year
Learn More
The surface of a poly(ethylene terephthalate) (PET) film was selectively irradiated with proton beams at various fluences to generate carboxylic acid groups on the surface; the resulting functionalized PET surface was then characterized in terms of its wettability, chemical structure, and chemical composition. The results revealed that (i) carboxylic acid(More)
Biomolecule patterning is important due to its potential applications in biodevices, tissue engineering, and drug delivery. In this study, we developed a new method for a biomolecular patterning on poly(epsilon-caprolactone) (PCL) films based on ion implantation. Ion implantation on a PCL film surface resulted in the formation of carboxylic acid groups. The(More)
A noncytotoxic procedure for the spatial organization of multiple cell types remains as a major challenge in tissue engineering. In this study, a simple and biocompatible micropatterning method of multiple cell types on a polymer surface is developed by using ion implantation. The cell-resistant Pluronic surface can be converted into a cell-adhesive one by(More)
In this study, a facile route to fabricate micropatterns of cells is presented on the basis of electron irradiation of poly(dimethylsiloxane) (PDMS). PDMS films were irradiated with electron beams through a pattern mask with micrometer-sized grids. After irradiation, the changes in the chemical composition, morphology, and wettability of the PDMS surface(More)
In this study, a facile and effective method for the surface functionalization of inert fluoropolymer substrates using surface grafting was demonstrated for the preparation of a new platform for fluorescence-based bioassays. The surface of perfluorinated poly(ethylene-co-propylene) (FEP) films was functionalized using a 150 keV ion implantation, followed by(More)
A convenient and effective method to pattern polymer-embedded metal nanoparticles by ion irradiation has been developed. The thin Pluronic films containing silver nitrate as a precursor of silver nanoparticles were irradiated through a pattern mask with accelerated proton (H+) ions. It was found from the UV-Vis measurement that the formation of silver(More)
A simple and facile method for the patterning of gold nanoparticles (GNPs) was described via selective ion irradiation and oxygen plasma etching. Thin Pluronic films containing HAuCI4 as the precursor of GNPs were selectively irradiated through a pattern mask with 200 keV proton ions to generate GNP-embedded Pluronic patterns. The Pluronic was then removed(More)
Poly(acrylic acid) (PAA)-patterned polystyrene (PS) substrates were prepared by ion beam lithography to control cell behaviors of mouse fibroblasts and human embryonic kidney cells. Thin PAA films spin-coated on non-biological PS substrates were selectively irradiated with energetic proton ions through a pattern mask. The irradiated substrates were(More)
Poly(vinyl pyrrolidone) (PVP)-stabilized silver nanoparticles (NPs) were used as a new nanocomposite resist for electron beam lithography. A nanocomposite resist prepared by reducing silver nitrate in an alcoholic PVP solution was patterned by using a scanning electron microscope equipped with a nanometer pattern generation system. Well-defined negative(More)