Inés Samengo

Learn More
Neural processing at most stages of the primate visual system is modulated by selective attention, such that behaviorally relevant information is emphasized at the expenses of irrelevant, potentially distracting information. The form of attention best understood at the cellular level is when stimuli at a given location in the visual field must be selected(More)
Sensory systems must translate incoming signals quickly and reliably so that an animal can act successfully in its environment. Even at the level of receptor neurons, however, functional aspects of the sensory encoding process are not yet fully understood. Specifically, this concerns the question how stimulus features and neural response characteristics(More)
Neurons in the nervous system exhibit an outstanding variety of morphological and physiological properties. However, close to threshold, this remarkable richness may be grouped succinctly into two basic types of excitability, often referred to as type I and type II. The dynamical traits of these two neuron types have been extensively characterized. It would(More)
Various classes of neurons alternate between high-frequency discharges and silent intervals. This phenomenon is called burst firing. To analyze burst activity in an insect system, grasshopper auditory receptor neurons were recorded in vivo for several distinct stimulus types. The experimental data show that both burst probability and burst characteristics(More)
Despite intrinsic noise sources, neurons can generate action potentials with remarkable reliability. This reliability is influenced by the characteristics of sensory or synaptic inputs, such as stimulus frequency. Here we use conductance-based models to study the frequency dependence of reliability in terms of the underlying single-cell properties. We are(More)
The capacity with which a system of independent neuron-like units represents a given set of stimuli is studied by calculating the mutual information between the stimuli and the neural responses. Both discrete noiseless and continuous noisy neurons are analyzed. In both cases, the information grows monotonically with the number of neurons considered. Under(More)
Single neurons in the cerebral cortex are immersed in a fluctuating electric field, the local field potential (LFP), which mainly originates from synchronous synaptic input into the local neural neighborhood. As shown by recent studies in visual and auditory cortices, the angular phase of the LFP at the time of spike generation adds significant extra(More)
A novel definition of the stimulus-specific information is presented, which is particularly useful when the stimuli constitute a continuous and metric set, as, for example, position in space. The approach allows one to build the spatial information distribution of a given neural response. The method is applied to the investigation of putative differences in(More)
We study the capacity with which a system of independent neuron-like units represents a given set of stimuli. We assume that each neuron provides a fixed amount of information and that the information provided by different neurons has a random overlap. We derive analytically the dependence of the mutual information between the set of stimuli and the neural(More)
The space of sensory stimuli is complex and high-dimensional. Yet, single neurons in sensory systems are typically affected by only a small subset of the vast space of all possible stimuli. A proper understanding of the input–output transformation represented by a given cell therefore requires the identification of the subset of stimuli that are relevant in(More)