Inés Plasencia

Learn More
Pulmonary surfactant, a thin lipid/protein film lining mammalian lungs, functions in vivo to reduce the work of breathing and to prevent alveolar collapse. Analogues of two hydrophobic surfactant proteins, SP-B and SP-C, have been incorporated into therapeutic agents for respiratory distress syndrome, a pathological condition resulting from deficiency in(More)
Pulmonary surfactant-associated protein B (SP-B) has been isolated from porcine lungs and reconstituted in bilayers of dipalmitoylphosphatidylcholine (DPPC) or egg yolk phosphatidylcholine (PC) to characterize the extent of insertion of the protein into phospholipid bilayers. The parameters for the interaction of SP-B with DPPC or PC using different(More)
In the present study, 13-residue peptides with sequences corresponding to the native N-terminal segment of pulmonary SP-C (surfactant protein C) have been synthesized and their interaction with phospholipid bilayers characterized. The peptides are soluble in aqueous media but associate spontaneously with bilayers composed of either zwitterionic(More)
BACKGROUND SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we(More)
A dansylated form of porcine surfactant-associated protein C (Dns-SP-C), bearing a single dansyl group at its N-terminal end, has been used to characterize the lipid-protein and protein-protein interactions of SP-C reconstituted in phospholipid bilayers, using fluorescence spectroscopy. The fluorescence emission spectrum of Dns-SP-C in phospholipid bilayers(More)
Predictive studies suggest that the known sequences of the N-terminal segment of surfactant protein SP-C from animal species have an intrinsic tendency to form beta-turns, but there are important differences on the probable location of these motifs in different SP-C species. Our hypothesis is that intrinsic structural determinants of the sequence of the(More)
Surfactant protein C (SP-C) is an essential component for the surface tension-lowering activity of the pulmonary surfactant system. It contains a valine-rich alpha helix that spans the lipid bilayer, and is one of the most hydrophobic proteins known so far. SP-C is also an essential component of various surfactant preparations of animal origin currently(More)
SP-C, the smallest pulmonary surfactant protein, is required for the formation and stability of surface-active films at the air-liquid interface in the lung. The protein consists of a hydrophobic transmembrane alpha-helix and a cationic N-terminal segment containing palmitoylated cysteines. Recent evidence suggests that the N-terminal segment is of critical(More)
Pulmonary surfactant protein SP-C is a 35-residue polypeptide composed of a hydrophobic transmembrane alpha-helix and a polycationic, palmitoylated-cysteine containing N-terminal segment. This segment is likely the only structural motif the protein projects out of the bilayer in which SP-C is inserted and is therefore a candidate motif to participate in(More)
Pulmonary surfactant protein SP-C has been isolated from porcine lungs and treated with dansyl isothiocyanate in chloroform:methanol 2:1 (v/v) solutions,under conditions optimized to introduce a single dansyl group covalently attached to the N-terminalamine group of the protein without loss of its native thioesther-linked palmitic chains. The resulting(More)