Imre G. Csizmadia

Learn More
The prediction of the biologically active native conformation of a protein is one of the fundamental challenges of structural biology. This problem remains yet unsolved mainly due to three factors: the partial knowledge of the effective free energy function that governs the folding process, the enormous size of the conformational space of a protein and,(More)
Various folded molecular structures contain different amount of information. The relative amount of information may be related to relative entropy or entropy change. The conformational entropy change for n-butane has been computed as the function of rotation around the central C-C bond. It appears that the g+ or g- conformers contain about 16% more(More)
The present study focuses on important questions associated with modeling of peptide and protein stability. Computing at different levels of theory (RHF, B3LYP) for a representative ensemble of conformers of di- and tripeptides of alanine, we found that the Gibbs Free Energy values correlate significantly with the total electronic energy of the molecules(More)
Non-reactive, comparative (2 × 1.2 μs) molecular dynamics simulations were carried out to characterize the interactions between glutathione (GSH, host molecule) and hydroxyl radical (OH(•), guest molecule). From this analysis, two distinct steps were identified in the recognition process of hydroxyl radical by glutathione: catching and steering, based on(More)
Due to the two methylene groups in their backbone, β-amino acids can adopt numerous secondary structures, including helices, sheets and nanotubes. Chirality introduced by the additional side chains can significantly influence the folding preference of β-peptides composed of chiral β-amino acids. However, only conceptual suggestions are present in the(More)
  • 1