Learn More
We present a novel method for the discovery and statistical representation of motion patterns in a scene observed by a static camera. Related methods involving learning of patterns of activity rely on trajectories obtained from object detection and tracking systems, which are unreliable in complex scenes of crowded motion. We propose a mixture model(More)
We propose to leverage multiple sources of information to compute an estimate of the number of individuals present in an extremely dense crowd visible in a single image. Due to problems including perspective, occlusion, clutter, and few pixels per person, counting by human detection in such images is almost impossible. Instead, our approach relies on(More)
We present a method for multi-target tracking that exploits the persistence in detection of object parts. While the implicit representation and detection of body parts have recently been leveraged for improved human detection, ours is the first method that attempts to temporally constrain the location of human body parts with the express purpose of(More)
—In this paper, we propose a novel method that exploits correlation between audiovisual dynamics of a video to segment and localize objects that are the dominant source of audio. Our approach consists of a two-step spatiotemporal segmentation mechanism that relies on velocity and acceleration of moving objects as visual features. Each frame of the video is(More)
This paper proposes a novel representation of articulated human actions and gestures and facial expressions. The main goals of the proposed approach are: 1) to enable recognition using very few examples, i.e., one or k-shot learning, and 2) meaningful organization of unlabeled datasets by unsupervised clustering. Our proposed representation is obtained by(More)
This paper proposes a novel method for recognition and classification of events represented by Mixture distributions of location and flow. The main idea is to classify observed events into semantically meaningful groups even when mo­ tion is observed from distinct viewpoints. Events in the pro­ posed framework are modeled as motion patterns, which are(More)
We propose a novel method to model and learn the scene activity, observed by a static camera. The proposed model is very general and can be applied for solution of a variety of problems. The motion patterns of objects in the scene are modeled in the form of a multivariate nonparametric probability density function of spatiotemporal variables (object(More)
Efficient modeling of actions is critical for recognizing human actions. Recently , bag of video words (BoVW) representation, in which features computed around spatiotemporal interest points are quantized into video words based on their appearance similarity, has been widely and successfully explored. The performance of this representation however, is(More)
We describe the Raytheon BBN Technologies (BBN) led VISER system for the TRECVID 2012 Multimedia Event Detection (MED) and Recounting (MER) tasks. We present a comprehensive analysis of the different modules in our evaluation system that includes: (1) a large suite of visual, audio and multimodal low-level features, (2) modules to detect semantic(More)
We describe the Raytheon BBN (BBN) VISER system that is designed to detect events of interest in multimedia data. We also present a comprehensive analysis of the different modules of that system in the context of the MED 2011 task. The VISER system incorporates a large set of low-level features that capture appearance, color, motion, audio, and audiovisual(More)