Learn More
Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing(More)
Protein-protein interaction (PPI) networks of many organisms share global topological features such as degree distribution, k-hop reachability, betweenness and closeness. Yet, some of these networks can differ significantly from the others in terms of local structures: e.g. the number of specific network motifs can vary significantly among PPI networks.(More)
UNLABELLED Recent years have witnessed an increase in research activity for the detection of structural variants (SVs) and their association to human disease. The advent of next-generation sequencing technologies make it possible to extend the scope of structural variation studies to a point previously unimaginable as exemplified by the 1000 Genomes(More)
MOTIVATION High-throughput sequencing of tumor samples has shown that most tumors exhibit extensive intra-tumor heterogeneity, with multiple subpopulations of tumor cells containing different somatic mutations. Recent studies have quantified this intra-tumor heterogeneity by clustering mutations into subpopulations according to the observed counts of DNA(More)
Somatic variants can be used as lineage markers for the phylogenetic reconstruction of cancer evolution. Since somatic phylogenetics is complicated by sample heterogeneity, novel specialized tree-building methods are required for cancer phylogeny reconstruction. We present LICHeE (Lineage Inference for Cancer Heterogeneity and Evolution), a novel method(More)
MOTIVATION In the past few years, human genome structural variation discovery has enjoyed increased attention from the genomics research community. Many studies were published to characterize short insertions, deletions, duplications and inversions, and associate copy number variants (CNVs) with disease. Detection of new sequence insertions requires(More)
With the increasing popularity of whole-genome shotgun sequencing (WGSS) via high-throughput sequencing technologies, it is becoming highly desirable to perform comparative studies involving multiple individuals (from a specific population, race, or a group sharing a particular phenotype). The conventional approach for a comparative genome variation study(More)
New generation sequencing technologies offer unique opportunities and challenges for re-sequencing studies. In this article, we focus on re-sequencing experiments using the Solexa technology, based on bacterial artificial chromosome (BAC) clones, and address an experimental design problem. In these specific experiments, approximate coordinates of the BACs(More)
We consider the problem of dynamically reallocating (or re-routing) m weighted tasks among a set of n uniform resources (one may think of the tasks as selfish players). We assume an arbitrary initial placement of tasks, and we study the performance of distributed, natural reallocation algorithms. We are interested in the time it takes the system to converge(More)