Ilona Petrikovics

Learn More
Annealed murine erythrocytes were employed as a carrier model to antagonize the toxic effects of organophosphorus agents. These resealed cells containing a recombinant phosphotriesterase provided striking protection against the lethal effect of paraoxon, an active metabolite of an agricultural pesticide, parathion. Phosphotriesterase hydrolyzes paraoxon to(More)
A new conceptual approach was employed to antagonize organophosphorus intoxication by using resealed carrier erythrocytes containing a recombinant phosphotriesterase. This enzyme has been reported to hydrolyze many organophosphorus compounds, including paraoxon, a potent cholinesterase inhibitor. Paraoxon is rapidly hydrolyzed by this enzyme to(More)
The cyanide metabolite 2-aminothiazoline-4-carboxylic acid (ATCA) is a promising biomarker for cyanide exposure because of its stability and the limitations of direct determination of cyanide and more abundant cyanide metabolites. A simple, sensitive, and specific method based on derivatization and subsequent gas chromatography-mass spectrometry (GC-MS)(More)
Methods of directly evaluating cyanide levels are limited by the volatility of cyanide and by the difficulty of establishing steady-state cyanide levels with time. We investigated the measurement of a stable, toxic metabolite, 2-aminothiazoline-4-carboxylic acid (ATCA), in an attempt to circumvent the challenge of directly determining cyanide concentrations(More)
Present studies have focused on nano-intercalated rhodanese in combination with sulfur donors to prevent cyanide lethality in a prophylactic mice model for future development of an effective cyanide antidotal system. Our approach is based on the idea of converting cyanide to the less toxic thiocyanate before it reaches the target organs by utilizing(More)
These studies are focused on antagonizing organophosphorous (OP) intoxications by a new conceptual approach using recombinant enzymes encapsulated within sterically stabilized liposomes to enhance diisopropylfluorophosphate (DFP) degradation. The OP hydrolyzing enzyme, organophosphorous acid anhydrolase (OPAA), encapsulated within the liposomes, was(More)
Prophylactic and therapeutic efficacy against organophosphorus (OP) intoxication by pralidoxime (2-PAM) and atropine were studied and compared with sterically stabilized long-circulating liposomes encapsulating recombinant organophosphorus hydrolase (OPH), either alone or in various specific combinations, in paraoxon poisoning. Prophylactic and therapeutic(More)
A series of organic thiosulfonates were synthesized and studied as sulfur donor substrates for rhodanese encapsulated within murine carrier erythrocytes. Previous studies have indicated that resealed erythrocytes containing rhodanese (CRBC) and sodium thiosulfate can rapidly metabolize cyanide to the less toxic thiocyanate. This thiosulfate-rhodanese system(More)
This investigation effort is focused on increasing organophosphate (OP) degradation by phosphotriesterase to antagonize OP intoxication. For these studies, sterically stabilized liposomes encapsulating recombinant phosphotriesterase were employed. This enzyme was obtained from Flavobacterium sp. and was expressed in Escherichia coli. It has a broad(More)