Ilka Weikusat

Learn More
Antifreeze proteins (AFPs), characterized by their ability to separate the melting and growth temperatures of ice and to inhibit ice recrystallization, play an important role in cold adaptation of several polar and cold-tolerant organisms. Recently, a multigene family of AFP genes was found in the diatom Fragilariopsis cylindrus, a dominant species within(More)
Naturally deformed ice contains subgrains with characteristic geometries that have recently been identified in etched surfaces using high-resolution light microscopy (LM). The probable slip systems responsible for these subgrain boundary types can be determined using electron backscattered diffraction (EBSD), providing the etch features imaged with(More)
The increasing catalogue of high-quality ice-penetrating radar data provides a unique insight in the internal layering architecture of the Greenland ice sheet. The stratigraphy, an indicator of past deformation, highlights irregularities in ice flow and reveals large perturbations without obvious links to bedrock shape. In this work, to establish a new(More)
We investigate the propagation of seismic waves in anisotropic ice. Two effects are important: (i) sudden changes in crystal orientation fabric (COF) lead to englacial reflections; (ii) the anisotropic fabric induces an angle dependency on the seismic velocities and, thus, recorded travel times. Velocities calculated from the polycrystal elasticity tensor(More)
Ice cores through an ice sheet can be regarded as a sample of a unique natural deformation experiment lasting up to a million years. Compared to other geological materials forming the earth‘s crust, the microstructure is directly accessible over the full depth. Controlled sublimation etching of polished ice sections reveals pores, air bubbles, grain(More)
Microstructures from deep ice cores reflect the dynamic conditions of the drill location as well as the thermodynamic history of the drill site and catchment area in great detail. Ice core parameters (crystal lattice-preferred orientation (LPO), grain size, grain shape), mesostructures (visual stratigraphy) as well as borehole deformation were measured in a(More)
The flow of glaciers and polar ice sheets is controlled by the highly anisotropic rheology of ice crystals that have hexagonal symmetry (ice lh). To improve our knowledge of ice sheet dynamics, it is necessary to understand how dynamic recrystallization (DRX) controls ice microstructures and rheology at different boundary conditions that range from pure(More)
Citation: Steinbach F, Kuiper E-JN, Eichler J, Bons PD, Drury MR, Griera A, Pennock GM and Weikusat I (2017) The Relevance of Grain Dissection for Grain Size Reduction in Polar Ice: Insights from Numerical Models and Ice Core Microstructure Analysis. Front. Earth Sci. 5:66. doi: 10.3389/feart.2017.00066 The Relevance of Grain Dissection for Grain Size(More)
  • 1