Learn More
We investigated the effects of IL-6 and a chimeric derivative of IL-6 and soluble IL-6 receptor (IL6RIL6 chimera) on excitotoxic injury in rat organotypic hippocampal slices. Brief application of N-methyl-d-aspartate (NMDA) induced astrocyte reactivity, neuron cell death, and oligodendrocyte degeneration, the latter caused by secondary activation of(More)
Opposite effects of nuclear factor-kappaB (NF-kappaB) on neuron survival rely on activation of diverse NF-kappaB factors. While p65 is necessary for glutamate-induced cell death, c-Rel mediates prosurvival effects of interleukin-1beta. However, it is unknown whether activation of c-Rel-dependent pathways reduces neuron vulnerability to amyloid-beta (Abeta),(More)
The transcription factor nuclear factor kappaB (NF-kappaB) is well known for its antiapoptotic action. However, in some disorders, such as cerebral ischemia, a proapoptotic function of NF-kappaB has been demonstrated. To analyze which subunit of NF-kappaB is functional in cerebral ischemia, we induced focal cerebral ischemia in mice with a germline deletion(More)
NF-kappaB is a nuclear transcription factor involved in the control of fundamental cellular functions including regulation of cell survival. We investigated NF-kappaB activation induced by two opposing modulators of cell viability: IL-1beta and glutamate. We found that IL-1beta activated p50, p65 and c-Rel subunits of NF-kappaB, while glutamate activated(More)
Brain cells display an amazing ability to respond to several different types of environmental stimuli and integrate this response physiologically. Some of these responses can outlive the original stimulus by days, weeks or even longer. Long-lasting changes in both physiological and pathological conditions occurring in response to external stimuli are almost(More)
The present study demonstrates that human SK-N-SH neuroblastoma cells, differentiated by retinoic acid (RA), express functional NMDA receptors and become vulnerable to glutamate toxicity. During exposure to RA, SK-N-SH cells switched from non-neuronal to neuronal phenotype by showing antigenic changes typical of postmitotic neurons together with markers(More)
Nuclear factor-kappaB (NF-kappaB) is a dimeric transcription factor composed of five members, p50, RelA/p65, c-Rel, RelB, and p52 that can diversely combine to form the active transcriptional dimer. NF-kappaB controls the expression of genes that regulate a broad range of biological processes in the central nervous system such as synaptic plasticity,(More)
Beta-amyloid (Abeta) peptides are key proteins in the pathophysiology of Alzheimer's disease (AD). While Abeta42 aggregates very rapidly to form early diffuse plaques, supplemental Abeta40 deposition is required to form mature neuritic plaques. We here investigated the role of nuclear factor-kappaB (NF-kappaB) pathway in Abeta40-mediated neuronal damage and(More)
The activation of nuclear factor kappa B (NF-κB) p50/RelA is a key event in ischemic neuronal injury, as well as in brain ischemic tolerance. We tested whether epigenetic mechanisms affecting the acetylation state of RelA might discriminate between neuroprotective and neurotoxic activation of NF-κB during ischemia. NF-κB activation and RelA acetylation were(More)
Progressive degeneration and intraneuronal Lewy bodies made of filamentous alpha-synuclein (alpha-syn) in dopaminergic cells of the nigrostriatal system are characteristics of Parkinson's disease (PD). Glucose uptake is reduced in some of the brain regions affected by PD neurodegenerative changes. Defects in mitochondrial activity in the substantia nigra(More)