Learn More
Numerous publications and commercial systems are available that deal with automatic detection of pulmonary nodules in thoracic computed tomography scans, but a comparative study where many systems are applied to the same data set has not yet been performed. This paper introduces ANODE09 ( http://anode09.isi.uu.nl), a database of 55 scans from a lung cancer(More)
— This paper deals with the problem of 3D stereo estimation and eye-hand calibration in humanoid robots. We first show how to implement a complete 3D stereo vision pipeline, enabling online and real-time eye calibration. We then introduce a new formulation for the problem of eye-hand coordination. We developed a fully automated procedure that does not(More)
—We present the Dynamic Force Field Controller (DForC), a reliable and effective framework in the context of humanoid robotics for real-time reaching and tracking in presence of obstacles. It is inspired by well established works based on artificial potential fields, providing a robust basis for sidestepping a number of issues related to inverse kinematics(More)
A computer-aided detection (CAD) system for the identification of small pulmonary nodules in low-dose and thin-slice CT scans has been developed. The automated procedure for selecting the nodule candidates is mainly based on a filter enhancing spherical-shaped objects. A neural approach based on the classification of each single voxel of a nodule candidate(More)
— We present a new method for three-finger precision grasp and its implementation in a complete grasping tool-chain. We start from binocular vision to recover the partial 3D structure of unknown objects. We then process the incomplete 3D point clouds searching for good triplets according to a function that weighs both the feasibility and the stability of(More)
Sparsity has been showed to be one of the most important properties for visual recognition purposes. In this paper we show that sparse representation plays a fundamental role in achieving one-shot learning and real-time recognition of actions. We start off from RGBD images, combine motion and appearance cues and extract state-of-the-art features in a(More)
—One of the defining characteristics of human cog-nition is our outstanding capacity to cooperate. A central requirement for cooperation is the ability to establish a " shared plan " —which defines the interlaced actions of the two cooperating agents—in real time, and even to negotiate this shared plan during its execution. In the current research we(More)
— Cooperation 1 is at the core of human social life. In this context, two major challenges face research on human-robot interaction: The first is to understand the underlying structure of cooperation, and the second is to build, based on this understanding, artificial agents that can successfully and safely interact with humans. Here we take a(More)
We introduce an online action recognition system that can be combined with any set of frame-by-frame feature descriptors. Our system covers the frame feature space with classifiers whose distribution adapts to the hardness of locally approximating the Bayes optimal classifier. An efficient nearest neighbour search is used to find and combine the local(More)
PURPOSE The aim of this work is to evaluate the potential of combining different computer-aided detection (CADe) methods to increase the actual support for radiologists of automated systems in the identification of pulmonary nodules in CT scans. METHODS The outputs of three different CADe systems developed by researchers of the Italian MAGIC-5(More)