Ilaria Cavallari

Learn More
Human T-cell leukemia virus type 1 (HTLV-1) codes for 9 alternatively spliced transcripts and 2 major regulatory proteins named Tax and Rex that function at the transcriptional and posttranscriptional levels, respectively. We investigated the temporal sequence of HTLV-1 gene expression in primary cells from infected patients using splice site-specific(More)
The discovery of human retroviruses in the early 1980s revealed the existence of viral-encoded non-structural genes that were not evident in previously described animal retroviruses. Based on the absence or presence of these additional genes retroviruses were classified as 'simple' and 'complex', respectively. Expression of most of these extra genes is(More)
Pituitary adenomas represent one of the key features of multiple endocrine neoplasia type 1. The gene involved in this syndrome (MEN1) is a putative tumor suppressor, that codes for a 610-amino acid nuclear protein termed 'menin'. Analyses of sporadic pituitary adenomas have so far failed to reveal MEN1 mutations or defects in MEN1 transcription in these(More)
Human T cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) are genetically related complex retroviruses that are capable of immortalizing human T-cells in vitro and establish life-long persistent infections in vivo. In spite of these apparent similarities, HTLV-1 and HTLV-2 exhibit a significantly different pathogenic potential. HTLV-1 is recognized as(More)
Human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) are delta retroviruses that share a common overall genetic organization, splicing pattern, and ability to infect and immortalize T-cells in vitro. However, HTLV-1 and HTLV-2 exhibit a clearly distinct pathogenic potential in infected patients. To find clues to the possible viral determinants of(More)
Human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) are delta retroviruses with similar genetic organization. Although both viruses immortalize T-cells in vitro, they exhibit distinct pathogenic potential in vivo. To search for possible differences in its expression strategy with respect to HTLV-1, we investigated the pattern of HTLV-2 expression(More)
Human T-cell leukemia virus type 1 (HTLV-1) expression depends on the concerted action of Tax, which enhances transcription of the viral genome, and Rex, which favours expression of incompletely spliced mRNAs. In the present study we investigated the influence of Rex on the nucleo-cytoplasmic partitioning of the complete set of alternatively spliced HTLV-1(More)
Human T cell leukemia virus type 1 (HTLV-1) gene expression is controlled by the key regulatory proteins Tax and Rex. The concerted action of these proteins results in a two-phase kinetics of viral expression that depends on a time delay between their action. However, it is difficult to explain this delay, as Tax and Rex are produced from the same mRNA. In(More)
In the present study, we developed a robust splice site-specific real-time RT-PCR method to quantitate all HTLV-2 transcripts. Results of this analysis conducted on three different infected cell lines (HTLV-2A Mo-T, C344 and HTLV-2B BJAB-Gu) showed that the most abundant mRNA was gag/pol followed by the accessory transcript 1-3, coding for the p28 and for(More)
The present study was aimed at gaining insight into the function of p13, an 87-amino acid mitochondrial protein expressed by HTLV-1. Although necessary for viral propagation in vivo, the mechanism of p13 function is incompletely understood. In previous studies we showed that p13 exerts antitumor effects in experimental transformation models. More recently,(More)