Learn More
Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these(More)
We characterize the relationship between the simultaneously recorded quantities of rodent grid cell firing and the position of the rat. The formalization reveals various properties of grid cell activity when considered as a neural code for representing and updating estimates of the rat's location. We show that, although the spatially periodic response of(More)
Sequential neural activity patterns are as ubiquitous as the outputs they drive, which include motor gestures and sequential cognitive processes. Neural sequences are long, compared to the activation durations of participating neurons, and sequence coding is sparse. Numerous studies demonstrate that spike-time-dependent plasticity (STDP), the primary known(More)
The mushroom body is an insect brain structure required for olfactory learning. Its principal neurons, the Kenyon cells (KCs), form a large cell population. The neuronal populations from which their olfactory input derives (olfactory sensory and projection neurons) can be identified individually by genetic, anatomical, and physiological criteria. We ask(More)
We present a method of estimating the gradient of an objective function with respect to the synaptic weights of a spiking neural network. The method works by measuring the fluctuations in the objective function in response to dynamic perturbation of the membrane conductances of the neurons. It is compatible with recurrent networks of conductance-based model(More)
We propose a model of songbird learning that focuses on avian brain areas HVC and RA, involved in song production, and area LMAN, important for generating song variability. Plasticity at HVC --> RA synapses is driven by hypothetical "rules" depending on three signals: activation of HVC --> RA synapses, activation of LMAN --> RA synapses, and reinforcement(More)
We review progress on the modeling and theoretical fronts in the quest to unravel the computational properties of the grid cell code and to explain the mechanisms underlying grid cell dynamics. The goals of the review are to outline a coherent framework for understanding the dynamics of grid cells and their representation of space; to critically present and(More)
Single neurons in the dorsolateral band of the rat entorhinal cortex (dMEC) fire as a function of rat position whenever the rat is on any vertex of a regular triangular lattice, that tiles the entire plane (Hafting et al., 2005). Even in the dark, the pattern refreshes correctly with rat movement, and maintains its coherence over paths whose accumulated(More)
We examined simultaneously recorded spikes from multiple rat grid cells, to explain mechanisms underlying their activity. Among grid cells with similar spatial periods, the population activity was confined to lie close to a two-dimensional (2D) manifold: grid cells differed only along two dimensions of their responses and otherwise were nearly identical.(More)
Entorhinal grid cells in mammals fire as a function of animal location, with spatially periodic response patterns. This nonlocal periodic representation of location, a local variable, is unlike other neural codes. There is no theoretical explanation for why such a code should exist. We examined how accurately the grid code with noisy neurons allows an ideal(More)