Il'ya V Fedotov

  • Citations Per Year
Learn More
Antiresonance-guiding hollow-core fibers are shown to enable highly sensitive detection of cell proliferation probes using Raman scattering within the region where the cellular Raman activity is minimal. We demonstrate that such fibers can substantially reduce the level of the background compared to standard index-guiding optical fibers, thus radically(More)
A highly nonlinear photonic-crystal fiber is used to demonstrate spectral compression of femtosecond light pulses combined with a tunable soliton frequency shift. A spectral compression ratio of 6.5 is achieved for solitons produced by unamplified 50 fs 1270 nm Cr:forsterite laser pulses shifted by the Raman effect to a central wavelength of 1.58 microm.
We demonstrate a scanning fiber-optic probe for magnetic-field imaging where nitrogen-vacancy (NV) centers are coupled to an optical fiber integrated with a two-wire microwave transmission line. The electron spin of NV centers in a diamond microcrystal attached to the tip of the fiber probe is manipulated by a frequency-modulated microwave field and is(More)
Dual-cladding photonic crystal fibers (PCFs) with two zero-dispersion points are used to enhance the two-photon excited luminescence (TPL) response from fluorescent protein biomarkers and neuron activity reporters in dye-cell experiments and in in vivo work on transgenic mice and tadpoles. The soliton transmission of ultrashort pulses through a PCF(More)
While the standard scenario of third-harmonic generation (THG) by a dispersive-wave pump involves the emission of light with a frequency 3omega, thrice the frequency omega of the input pump field, solitons undergoing a continuous shift of their central frequency omega due to the Raman effect in a multimode optical fiber can generate the third harmonic in a(More)
Highly sensitive room-temperature vectorial magnetic-field gradiometry is demonstrated using optically detected magnetic resonance (ODMR) in fiber-coupled nitrogen-vacancy (NV) centers in diamond. With a bulk NV-diamond magnetometer coupled to a pair of optical fibers integrated with a microwave transmission line, the differential ODMR measurements are(More)
We show that sequences of femtosecond laser pulses can control the rotational Raman response of a gas mixture, giving rise to a tunable manifold of echo recurrences in the retarded nonlinear-optical response of the gas. Tailored phase masks for high-intensity ultrashort laser pulses are experimentally demonstrated using molecular rotations in the gas phase(More)
Differential optical detection of a magnetic resonance induced in nitrogen-vacancy (NV) centers in diamond is shown to enable a high-spatial-resolution room-temperature magnetic-field gradiometry on a fiber platform. An ultracompact design of this fiber-based solid-state magnetic gradiometer is achieved by integrating an NV-diamond magnetic sensor with a(More)
Cognitive tests on representative groups of freely behaving transgenic mice are shown to enable a quantitative characterization of reconnectable implantable fiber-optic neurointerfaces for optogenetic neurostimulation. A systematic analysis of such tests provides a robust quantitative measure for the cognitive effects induced by fiber-optic(More)