Il-Seon Park

Learn More
Chemical synthesis of long or aggregation-prone peptide has been problematic. Its biological production has an advantage in that point, but it often forms inclusion body which creates difficulties in recovery of targets. As a deubiquitylating enzyme (Usp2-cc) was shown in this study to maintain its activity even in the presence of up to 4M urea, target(More)
To develop a useful method for designing cell-selective antimicrobial peptides and to investigate the effect of incorporating peptoid residues into an alpha-helical model peptide on structure, function, and mode of action, we synthesized a series of model peptides incorporating Nala (Ala-peptoid) into different positions of an amphipathic alpha-helical(More)
Here, we report the successful design of a novel bacteria-selective antimicrobial peptide, Pep-1-K (KKTWWKTWWTKWSQPKKKRKV). Pep-1-K was designed by replacing Glu-2, Glu-6, and Glu-11 in the cell-penetrating peptide Pep-1 with Lys. Pep-1-K showed strong antibacterial activity against reference strains (MIC = 1-2 microM) of Gram-positive and Gram-negative(More)
KR-12 (residues 18-29 of LL-37) was known to be the smallest peptide of human cathelicidin LL-37 possessing antimicrobial activity. In order to optimize α-helical short antimicrobial peptides having both antimicrobial and antiendotoxic activities without mammalian cell toxicity, we designed and synthesized a series of KR-12 analogs. Highest hydrophobic(More)
Apoptosis is essential in the death process induced by Amyloid-β (Aβ), a major constituent of diffuse plaques found in Alzheimer's disease patients. However, we have found that caspase activation and cell death induced by staurosporine, employed to induce the intrinsic mitochondria-dependent apoptotic pathway, were significantly reduced by 42 amino-acid(More)
To develop novel antimicrobial peptides (AMPs) with shorter lengths, improved prokaryotic selectivity and retained lipolysaccharide (LPS)-neutralizing activity compared to human cathelicidin AMP, LL-37, a series of amino acid-substituted analogs based on IG-19 (residues 13-31 of LL-37) were synthesized. Among the IG-19 analogs, the analog a4 showed the(More)
Polymerization of monomeric amyloid-β peptides (Aβ) into soluble oligomers and insoluble fibrils is one of the major pathways triggering the pathogenesis of Alzheimer's disease (AD). Using small molecules to prevent the polymerization of Aβ peptides can, therefore, be an effective therapeutic strategy for AD. In this study, we investigate the effects of(More)
Vibrio vulnificus is a marine bacterium and a human pathogen capable of causing wound infection and septicemia. We previously showed that the metalloprotease vEP secreted by V. vulnificus activates prothrombin in vitro. To further investigate the ability of vEP to activate other zymogens, we used a mutant form of procaspase-3 which lacks the native cleavage(More)
IsCT-P (ILKKIWKPIKKLF-NH2) is a novel alpha-helical antimicrobial peptide with bacterial cell selectivity designed from a scorpion-derived peptide IsCT. To investigate the role of L- or D-Pro kink on the structure and the mode of action of a short alpha-helical antimicrobial peptide with bacterial cell selectivity, we synthesized IsCT-p, in which D-Pro is(More)
To investigate the effect of the number and distribution of d-amino acids introduced into non-cell-selective alpha-helical antimicrobial peptides on the cell selectivity, protease stability and anti-inflammatory activity, we synthesized an 18-meric Leu/Lys-rich alpha-helical model peptide (K(9)L(8)W) and d-amino acid-containing diastereomeric peptides.(More)