Learn More
The maintenance of energy homeostasis is essential for life, and its dysregulation leads to a variety of metabolic disorders. Under a fed condition, mammals utilize glucose as the main metabolic fuel, and short-chain fatty acids (SCFAs) produced by the colonic bacterial fermentation of dietary fiber also contribute a significant proportion of daily energy(More)
Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly(More)
BACKGROUND AND PURPOSE Activators of peroxisome proliferator-activated receptor-gamma (PPARgamma), a member of the PPAR family, increase levels of CuZn-superoxide dismutase (SOD) in cultured endothelium, suggesting a mechanism by which it may exert its protective effect within the brain. These properties raise the question of whether a PPARgamma agonist may(More)
OBJECTIVE We examined the endothelial nitric oxide (eNOS) gene polymorphisms to assess its possible association with diabetic retinopathy and macular edema. RESEARCH DESIGN AND METHODS A total of 226 patients with type 2 diabetes and 186 healthy subjects were studied. Type 2 diabetic patients consisted of 110 patients without retinopathy, 46 patients with(More)
Benzbromarone, a uricosuric drug, reportedly causes hepatic hypertrophy accompanied by proliferation of peroxisomes in rats. To elucidate the mechanisms underlying induction of peroxisome proliferation by benzbromarone, we examined binding affinity for peroxisome proliferator-activated receptor alpha (PPARalpha) and gamma (PPARgamma), and effects on the(More)
Feeding and the circadian system regulate lipid absorption and metabolism, and the expression of enzymes involved in lipid metabolism is believed to be directly controlled by the clock system. To investigate the interaction between the lipid metabolism system and the circadian system, we analyzed the effect of a CLOCK/BMAL1 heterodimer on the(More)
In this study, we examined alterations in the enzymatic antioxidant defenses associated with learning deficits induced by type 2 diabetes, and studied the effects of the peroxisome proliferator-activated receptor γ agonist pioglitazone on these learning deficits. Learning ability was assessed by visual discrimination tasks in Otsuka Long-Evans Tokushima(More)
Intestinal alkaline phosphatase (IAP) is a brush-border membrane ectoenzyme (BBM-IAP) that is released into the lumen (L-IAP) after a high-fat diet. We examined the effects of oil feeding and the addition of mixed-lipid micelles on the formation of L-IAP in oil-fed rat intestine, Caco-2 cell monolayers, and mouse intestinal loops. We localized IAP in the(More)
Phosphatidylcholine (PC) and its hydrolysates are considered to stimulate intestinal lipid absorption, however, their exact effects on lipoproteins and apolipoprotein (apo) metabolism remain ambiguous. This study aimed to further differentiate the effects of them using fully differentiated enterocyte-like Caco-2 cells. Lipid micelles (oleic acid 0.6,(More)
Intestinal alkaline phosphatase (IAP) is involved in the process of fat absorption, a conclusion confirmed by an altered lipid transport and a faster body weight gain from 10 to 30 wk in both male and female mice with a homozygous null mutation of the IAP coding gene (Akp3(-/-) mice). This study was aimed to delineate morphologically and quantitatively the(More)