Ihab Haidar

Learn More
— Basal ganglia are interconnected deep brain structures involved in movement generation. Their beta-band oscillations (13-30Hz) are known to be linked to Parkinson's disease motor symptoms. In this paper, we provide conditions under which these oscillations may occur, by explicitly considering the role of the pedun-culopontine nucleus (PPN). We analyze the(More)
We show how a particular spatial structure with a buffer globally stabilizes the chemostat dynamics with non-monotonic response function, while this is not possible with single, serial or parallel chemostats of the same total volume and input flow. We give a characterization of the set of such configurations that satisfy this property, as well as the(More)
The objective of the paper is to evaluate the ability of reactive transport models and their numerical implementations (such as MIN3P) to simulate simple microbial transformations in conditions of chemostat or gradostat models, that are popular in microbial ecology and waste treatment ecosystems. To make this comparison, we first consider an abstract(More)
We study how a particular spatial structure with a buffer impacts the number of equilibria and their stability in the chemostat model. We show that the occurrence of a buffer can allow a species to persist or on the opposite to go extinct, depending on the characteristics of the buffer. For non-monotonic response functions, we characterize the buffered(More)
This paper develops a new closed-loop firing rate regulation strategy for a population of neurons in the subthalamic nucleus, derived using a model-based analysis of the basal ganglia. The system is described using a firing rate model, in order to analyse the generation of beta-band oscillations. On this system, a proportional regulation of the firing rate(More)
  • 1