Learn More
We report a novel model in which remote activation of peripheral nociceptive pathways in transgenic mice is achieved optogenetically, without any external noxious stimulus or injury. Taking advantage of a binary genetic approach, we selectively targeted Nav1.8(+) sensory neurons for conditional expression of channelrhodopsin-2 (ChR2) channels. Acute blue(More)
We report a novel transgenic mouse model in which the terminals of peripheral nociceptors can be silenced optogenetically with high spatiotemporal precision, leading to the alleviation of inflammatory and neuropathic pain. Inhibitory archaerhodopsin-3 (Arch) proton pumps were delivered to Nav1.8(+) primary afferents using the Nav1.8-Cre driver line. Arch(More)
We report a novel transgenic mouse model in which the terminals of peripheral nociceptors can be silenced optogenetically with high spatiotemporal precision, leading to the alleviation of inflammatory and neuropathic pain. Inhibitory archaerhodopsin-3 (Arch) proton pumps were delivered to Nav1.8 primary afferents using the Nav1.8-Cre driver line. Arch(More)
Primary C-fiber nociceptors are broadly divided into peptidergic and nonpeptidergic afferents. TRPV1 is a thermosensitive cation channel mainly localized in peptidergic nociceptors, whereas MrgD is a sensory G protein-coupled receptor expressed in most nonpeptidergic nociceptive afferents. TRPV1 and MrgD fibers have been reported to be primarily involved in(More)
s The Journal of Pain S67 afferents, leading to the development of muscle pain. This work also suggests potential therapies for prevention of persistent muscle pain initiated by an ischemic insult. (367) Interrogating the role of peripheral opioid receptors using an optogenetic approach H Beaudry, I Daou, A Ribeiro-Da-Silva, and P S egu ela; McGill(More)
Chronic pain affects a third of the population and current treatments produce limited relief and severe side effects. An alternative strategy to decrease pain would be to directly modulate somatosensory pathways using optogenetics. Optogenetics involves the use of genetically encoded and optically active proteins, namely opsins, to control neuronal(More)
  • 1