Igor V Kubasov

Learn More
Nicotine in concentration 100 nM which corresponds to concentration of nicotine circulating in tobacco smokes induced hyperpolarization by approximately 4 mV of muscle fibres of the rat isolated diaphragm, as well as an increase in amplitude and acceleration of action potentials. Similar hyperpolarization was induced by nicotine and acetylcholine in the rat(More)
Two types of muscle fibre action potentials (APs) were recorded using narrow-tipped extracellular pipettes in isolated sartorius muscles of frog, Rana temporaria. The waveform of type 1 responses (T1 AP, 75% of recordings) was biphasic, 'positive–negative.' The type 2 signals were tri-phasic, 'positive–negative–positive' (T2 AP, 18%). The type of AP was(More)
After three days of hind limb unloading, the depolarization of muscle fibers from -71.0 +/- 0.5 mV to -66.8 +/- 0.7 mV as well as a decrease in muscle excitability and a trend to fatigue acceleration were observed. After hind limb unloading, the electrogenic contribution of the ouabain-sensitive alpha2 isoform of Na,K-ATPase, tested as depolarization due to(More)
Using a computer graphics approach, the last contractile responses (LCRN, where N is a number of elementary contractile responses in tetanus) were separated from integral tetanic responses of rat fast muscles, m. Eхtensor digitorum longus (m. EDL), and slow muscles, m. Soleus, evoked by trains of 5, 10 and 50 stimuli. In m. Soleus, at a stimulation(More)
The last contractile responses (LCRN), where N is the number of individual contractile responses within tetanus, were separated from the integral tetanic responses of fast, m. Extensor digitorum longus (m. EDL), and slow, m. Soleus, rat muscles using a computer-graphic technique. The average amplitude of LCR5 in m. Soleus at a 20 Hz stimulation rate(More)
In control experiments (n = 16), during direct stimulation of m. Soleus by trains of 5, 10 and 50 stimuli at a rate of 20 Hz a biphasic change was detected in the amplitude of the last contractile responses (LCRN) depending on N, where N is the number of individual contractile responses in the tetanus. Thus, an initial decrease in LCRN amplitudes (down to(More)
Developmental changes in the contractile and electrical responses of isolated fast (tibialis anterior) and slow (soleus) muscles from chick embryo (16–20 days of embryonic development) were studied, as were the effects of hypoxia on them. Normalized contractile response forces for tibialis anterior were significantly greater than those for soleus. On days(More)
The age-related changes of the contractile and electrical responses of the fast (m. tibialis anterior) and slow (m. soleus) isolated skeletal muscles and their changes under acute hypoxia were estimated during the 16-20 days of the chick embryogenesis. For the first time, the contractile and electrical characteristics of these muscles were described in the(More)