Learn More
In this first intracellular study of neocortical activities during waking and sleep states, we hypothesized that synaptic activities during natural states of vigilance have a decisive impact on the observed electrophysiological properties of neurons that were previously studied under anesthesia or in brain slices. We investigated the incidence of different(More)
An in vivo preparation has been developed to study the mechanisms underlying spontaneous sleep oscillations. Dual and triple simultaneous intracellular recordings were made from neurons in small isolated cortical slabs (10 mm x 6 mm) in anesthetized cats. Spontaneously occurring slow sleep oscillations, present in the adjacent intact cortex, were absent in(More)
Earlier extracellular recordings during natural sleep have shown that, during slow-wave sleep (SWS), neocortical neurons display long-lasting periods of silence, whereas they are tonically active and discharge at higher rates during waking and sleep with rapid eye movements (REMs). We analyzed the nature of long-lasting periods of neuronal silence in SWS(More)
Fast spontaneous oscillations (mainly 30-40 Hz) characterize cortical and thalamic neuronal networks during behavioral states of increased vigilance and depend on cell depolarization under the influence of ascending activating systems. We investigated, by means of intracellular recording and staining in vivo, the properties of fast-oscillating cortical(More)
Spontaneous brain oscillations during states of vigilance are associated with neuronal plasticity due to rhythmic spike bursts and spike trains fired by thalamic and neocortical neurons during low-frequency rhythms that characterize slow-wave sleep and fast rhythms occurring during waking and REM sleep. Intracellular recordings from thalamic and related(More)
The synchronization of fast (mainly 30 to 40 Hz) oscillations in intrathalamic and thalamocortical (TC) networks of cat was studied under ketamine-xylazine anesthesia and in behaving animals by means of field potential, extra- and intracellular recordings from multiple sites in the thalamic reticular (RE) nucleus, dorsal (sensory, motor, and intralaminar)(More)
In the preceding papers of this series, we have analyzed the cellular patterns and synchronization of neocortical seizures occurring spontaneously or induced by electrical stimulation or cortical infusion of bicuculline under a variety of experimental conditions, including natural states of vigilance in behaving animals and acute preparations under(More)
1. The patterns and synchronization of low-frequency, sleeplike rhythms (slow, spindle and delta oscillations) were compared in the intact-cortex and decorticated hemispheres of cats under ketamine-xylazine anesthesia. Intracellular recordings were performed in intact and decorticated hemispheres from 58 rostrolateral thalamic reticular (RE) neurons and(More)
Repetitive stimulation of the dorsal thalamus at 7-14 Hz produces an increasing number of spikes at an increasing frequency in neocortical neurons during the first few stimuli. Possible mechanisms underlying these cortical augmenting responses were analyzed with a computer model that included populations of thalamocortical cells, thalamic reticular neurons,(More)
1. To explore the nature of the long-lasting hyperpolarizations that characterize slow oscillations in corticothalamic circuits in vivo, intracellular recordings were obtained under ketamine-xylazine anaesthesia from cortical (Cx) cells of the cat precruciate motor cortex, thalamic reticular (RE) cells from the rostrolateral sector, and thalamocortical (TC)(More)