Learn More
Mobile malware has been growing in scale and complexity as smartphone usage continues to rise. Android has surpassed other mobile platforms as the most popular whilst also witnessing a dramatic increase in malware targeting the platform. A worrying trend that is emerging is the increasing sophistication of Android malware to evade detection by traditional(More)
Android OS supports multiple communication methods between apps. This opens the possibility to carry out threats in a collaborative fashion, c.f. the Soundcomber example from 2011. In this paper we provide a concise definition of collusion and report on a number of automated detection approaches, developed in co-operation with Intel Security.
With over 50 billion downloads and more than 1.3 million apps in Google’s official market, Android has continued to gain popularity amongst smartphone users worldwide. At the same time there has been a rise in malware targeting the platform, with more recent strains employing highly sophisticated detection avoidance techniques. As traditional signature(More)
The battle to mitigate Android malware has become more critical with the emergence of new strains incorporating increasingly sophisticated evasion techniques, in turn necessitating more advanced detection capabilities. Hence, in this paper we propose and evaluate a machine learning based approach based on eigenspace analysis for Android malware detection(More)
Mobile malware has continued to grow at an alarming rate despite on-going mitigation efforts. This has been much more prevalent on Android due to being an open platform that is rapidly overtaking other competing platforms in the mobile smart devices market. Recently, a new generation of Android malware families has emerged with advanced evasion capabilities(More)
Automatic malware classifiers often perform badly on the detection of new malware, i.e., their robustness is poor. We study the machine-learning-based mobile malware classifiers and reveal one reason: the input features used by these classifiers can't capture general behavioural patterns of malware instances. We extract the best-performing syntax-based(More)
The complexity of anti-virus software has grown enormously over the last five years. The methods used to detect viruses have evolved from dumb-grunt scanning of the whole file from top to bottom for a specific search string to very intelligent methods based on a combination of heuristic and specific detection methods. This paper discusses this evolution in(More)
Machine-learning-based Android malware classifiers perform badly on the detection of new malware, in particular, when they take API calls and permissions as input features, which are the best performing features known so far. This is mainly because signature-based features are very sensitive to the training data and cannot capture general behaviours of(More)
Android is designed with a number of built-in security features such as app sandboxing and permission-based access controls. Android supports multiple communication methods for apps to cooperate. This creates a security risk of app collusion. For instance, a sandboxed app with permission to access sensitive data might leak that data to another sandboxed app(More)