Igor Križaj

Learn More
An important group of toxins, whose action at the molecular level is still a matter of debate, is secreted phospholipases A(2) (sPLA(2)s) endowed with presynaptic or beta-neurotoxicity. The current belief is that these beta-neurotoxins (beta-ntxs) exert their toxicity primarily due to their extracellular enzymatic action on the plasma membrane of(More)
Highly purified human brain cathepsin H (EC 3.4.22.16) was used to study its involvement in degradation of different brain peptides. Its action was determined to be selective. On Leu-enkephalin, dynorphin (1-6), dynorphin (1-13), alpha-neoendorphin, and Lys-bradykinin, it showed a preferential aminopeptidase activity by cleaving off hydrophobic or basic(More)
Based on previous screening for keratinolytic nonpathogenic fungi, Paecilomyces marquandii and Doratomyces microsporus were selected for production of potent keratinases. The enzymes were purified and their main biochemical characteristics were determined (molecular masses, optimal temperature and pH for keratinolytic activity, N-terminal amino acid(More)
Cone snail venoms are considered an untapped reservoir of extremely diverse peptides, named conopeptides, displaying a wide array of pharmacological activities. We report here for the first time, the presence of high molecular weight compounds that participate in the envenomation cocktail used by these marine snails. Using a combination of proteomic and(More)
Modulating composition and shape of biological membranes is an emerging mode of regulation of cellular processes. We investigated the global effects that such perturbations have on a model eukaryotic cell. Phospholipases A(2) (PLA(2)s), enzymes that cleave one fatty acid molecule from membrane phospholipids, exert their biological activities through(More)
The structural features of presynaptically neurotoxic secretory phospholipases A(2) (sPLA(2)s) that are responsible for their potent and specific action are still a matter of debate. To identify the residues that distinguish a highly neurotoxic sPLA(2), ammodytoxin A (AtxA), from a structurally similar but more than two orders of magnitude less toxic(More)
Recent identification of intracellular proteins that bind ammodytoxin (calmodulin, 14-3-3 proteins, and R25) suggests that this snake venom presynaptically active phospholipase A(2) acts intracellularly. As these ammodytoxin acceptors are cytosolic and mitochondrial proteins, the toxin should be able to enter the cytosol of a target cell and remain stable(More)
β-neurotoxins are enzymes, secreted phospholipases A2, that inhibit neurotransmission in neuromuscular synapses by poisoning the motoneuron. They were reviewed extensively several years ago (Pungerčar and Križaj, 2007). Here we present and critically discuss the most important experimental facts reported since then. Evidence has been presented for specific(More)
A mutant form of ammodytoxin A, a neurotoxic phospholipase A(2) from the venom of the long nosed viper Vipera ammodytes ammodytes, was prepared by site-directed mutagenesis, conjugated to a nanogold particle and inoculated into the antero-lateral aspect of one hind limb of female mice. Eight hours later the mice were killed, the soleus muscles of both ipsi-(More)
RecA protein is a hallmark for the bacterial response to insults inflicted on DNA. It catalyzes the strand exchange step of homologous recombination and stimulates self-inactivation of the LexA transcriptional repressor. Importantly, by these activities, RecA contributes to the antibiotic resistance of bacteria. An original way to decrease the acquisition(More)