Learn More
In this paper, we use conformal field theory to construct a generalized cohomology theory which has some properties of elliptic cohomology theory which was some properties of elliptic cohomology. A part of our presentation is a rigorous definition of conformal field theory following Segal's axioms, and some examples, such as lattice theories associated with(More)
With motivation from algebraic topology, algebraic geometry, and string theory, we study various topics in differential homological algebra. The work is divided into five largely independent parts: I Definitions and examples of operads and their actions II Partial algebraic structures and conversion theorems III Derived categories from a topological point(More)
In a paper that has attracted little notice, Priddy showed that the Brown-Peterson spectrum at a prime p can be constructed from the p-local sphere spectrum S by successively killing its odd dimensional homotopy groups. This seems to be an isolated curiosity, but it is not. For any space or spectrum Y that is p-local and (n 0 − 1)-connected and has π n 0(More)
The homotopy limit problem for Karoubi's Hermitian K-theory [25] was posed by Thomason in 1983 [48]. There is a canonical map from algebraic Hermitian K-theory to the /2-homotopy fixed points of algebraic K-theory. The problem asks, roughly, how close this map is to being an isomorphism, specifically after completion at 2. In this paper, we solve this(More)