Learn More
During normal vision, when subjects attempt to fix their gaze on a small stimulus feature, small fixational eye movements persist. We have recorded the impulse activity of single neurons in primary visual cortex (V1) of macaque monkeys while their fixational eye movements moved the receptive-field activating region (AR) over and around a stationary(More)
In natural vision, continuously changing input is generated by fast saccadic eye movements and slow drifts. We analyzed effects of fixational saccades, voluntary saccades, and drifts on the activity of macaque V1 neurons. Effects of fixational saccades and small voluntary saccades were equivalent. In the presence of a near-optimal stimulus, separate(More)
We studied the spatial organization of receptive fields and the responses to gratings of neurons in parafoveal V1 of alert monkeys. Activating regions (ARs) of 228 cells were mapped with increment and decrement bars while compensating for fixational eye movements. For cells with two or more ARs, the overlap between ARs responsive to increments (INC) and ARs(More)
Contralateral hemispheric representation of sensory inputs (the right visual hemifield in the left hemisphere and vice versa) is a fundamental feature of primate sensorimotor organization, in particular the visuomotor system. However, many higher-order cognitive functions in humans show an asymmetric hemispheric lateralization--e.g., right brain(More)
We studied orientation selectivity in V1 of alert monkeys and its relationship to other physiological parameters and to anatomical organization. Single neurons were stimulated with drifting bars or with sinusoidal gratings while compensating for eye position. Orientation selectivity based on spike counts was quantified by circular variance and by the(More)
Impairments of spatial awareness and decision making occur frequently as a consequence of parietal lesions. Here we used event-related functional MRI (fMRI) in monkeys to investigate rapid reorganization of spatial networks during reversible pharmacological inactivation of the lateral intraparietal area (LIP), which plays a role in the selection of eye(More)
Trains of electrical stimuli were delivered to the mesencephalic 'locomotor region' in the rough skin newt. The current (3-12 mcA) and the interstimulus interval (100 to 200 ms) were adjusted so that locomotion arose in approximately 10 s, or so that the train remained subthreshold for initiation of locomotion. Impulses of single neurons in the hindbrain(More)
In this time-resolved functional magnetic resonance imaging (fMRI) study, we aimed to trace the neuronal correlates of covert planning processes that precede visually guided motor behavior. Specifically, we asked whether human posterior parietal cortex has prospective planning activity that can be distinguished from activity related to retrospective visual(More)
This chapter summarizes experiments which were designed to reveal how repetitive electrical stimulation of the mesencephalic locomotor region (MLR) recruits nearby hindbrain neurons into activity, such that locomotion can ensue in the tiger salamander, A. tigrinum. The MLR stimulus strength was subthreshold or near-threshold for locomotor movements to(More)
The ability to selectively process visual inputs and to decide between multiple movement options in an adaptive manner is critical for survival. Such decisions are known to be influenced by factors such as reward expectation and visual saliency. The dorsal pulvinar connects to a multitude of cortical areas that are involved in visuospatial memory and(More)