Learn More
In this paper we present a self-organizing neural network model of early lexical development called DevLex. The network consists of two self-organizing maps (a growing semantic map and a growing phonological map) that are connected via associative links trained by Hebbian learning. The model captures a number of important phenomena that occur in early(More)
Action understanding undoubtedly involves visual representations. However, linking the observed action with the respective motor category might facilitate processing and provide us with the mechanism to “step into the shoes” of the observed agent. Such principle might be very useful also for a cognitive robot allowing it to link the observed(More)
Recently there has been an outburst of interest in extending topographic maps of vectorial data to more general data structures, such as sequences or trees. However, there is no general consensus as to how best to process sequences using topographic maps, and this topic remains an active focus of neurocomputational research. The representational(More)
One of the main problems associated with artificial neural networks on-line learning methods is the estimation of model order. In this paper, we report about a new approach to constructing a resource-allocating radial basis function network exploiting weights adaptation using recursive least-squares technique based on Givens QR decomposition. Further, we(More)
We present a model of a bidirectional three-layer neural network with sigmoidal units, which can be trained to learn arbitrary mappings. We introduce a bidirectional activation-based learning algorithm (BAL), inspired by O’Reilly’s supervised Generalized Recirculation (GeneRec) algorithm that has been designed as a biologically plausible alternative to(More)
We propose a bio-inspired unsupervised connectionist architecture and apply it to grounding the spatial phrases. The two-layer architecture combines by concatenation the information from the visual and the phonological inputs. In the first layer, the visual pathway employs separate ‘what’ and ‘where’ subsystems that represent the identity and spatial(More)
The recent outburst of interest in cognitive developmental robotics is fueled by the ambition to propose ecologically plausible mechanisms of how, among other things, a learning agent/robot could ground linguistic meanings in its sensorimotor behavior. Along this stream, we propose a model that allows the simulated iCub robot to learn the meanings of(More)
Recently, there has been an outburst of interest in extending topographic maps of vectorial data to more general data structures, such as sequences or trees. The representational capabilities and internal representations of the models are not well understood. We concentrate on a generalization of the Self-Organizing Map (SOM) for processing sequential data(More)