Igor E. Golovkin

Learn More
inertial fusion, and high energy density plasmas J. E. Bailey, G. A. Rochau, R. C. Mancini, C. A. Iglesias, J. J. MacFarlane, I. E. Golovkin, C. Blancard, Ph. Cosse, and G. Faussurier Sandia National Laboratories, Albuquerque, New Mexico, 87185-1196, USA University of Nevada, Reno, Nevada 89557, USA Lawrence Livermore National Laboratory, University of(More)
The time-dependent gradient structure of a laser-compressed, high-energy-density plasma has been determined using a method based on the simultaneous analysis of time-resolved x-ray monochromatic images and x-ray line spectra from Ar-doped D2 implosion cores. The analysis self-consistently determines the temperature and density gradients that yield the best(More)
Nearly a century ago it was recognized that radiation absorption by stellar matter controls the internal temperature profiles within stars. Laboratory opacity measurements, however, have never been performed at stellar interior conditions, introducing uncertainties in stellar models. A particular problem arose when refined photosphere spectral analysis led(More)
Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell(More)
Hot dense capsule implosions driven by Z-pinch x rays have been measured using a approximately 220 eV dynamic Hohlraum to implode 1.7-2.1 mm diameter gas-filled CH capsules. The capsules absorbed up to approximately 20 kJ of x rays. Argon tracer atom spectra were used to measure the T(e) approximately 1 keV electron temperature and the n(e) approximately(More)
Measurements of iron-plasma transmission at 156+/-6 eV electron temperature and 6.9+/-1.7 x 10(21) cm(-3) electron density are reported over the 800-1800 eV photon energy range. The temperature is more than twice that in prior experiments, permitting the first direct experimental tests of absorption features critical for understanding solar interior(More)
X-ray spectroscopic analysis is a powerful tool for plasma diagnostics. We use genetic algorithms to automatically analyze experimental X-ray line spectra and discuss a particular implementation of the genetic algorithm suitable for our problem. Since spectroscopic analysis may be computationally intensive, we also investigate the use of case injected(More)
We have begun a collaborative investigation of the response of candidate first-wall inertial fusion energy (IFE) reactor chamber drywall materials to X-rays on the Z facility, and to ions on RHEPP-1, both located at Sandia National Laboratories. Dose levels are comparable to those anticipated in future direct-drive reactors. Due to the 5 /10 Hz repetition(More)
Understanding stellar interiors, inertial confinement fusion, and Z pinches depends on opacity models for mid-Z plasmas in the 100-300 eV temperature range. These models are complex and experimental validation is crucial. In this paper we describe the diagnosis of the first experiments to measure iron plasma opacity at a temperature high enough to produce(More)