Learn More
Magnaporthe grisea is the most destructive pathogen of rice worldwide and the principal model organism for elucidating the molecular basis of fungal disease of plants. Here, we report the draft sequence of the M. grisea genome. Analysis of the gene set provides an insight into the adaptations required by a fungus to cause disease. The genome encodes a large(More)
UNLABELLED The reconstruction of population processes from DNA sequence variation requires the coordinated implementation of several coalescent-based methods, each bound by specific assumptions and limitations. In practice, the application of these coalescent-based methods for parameter estimation is difficult because they make strict assumptions that must(More)
We have added two software tools to our Suite of Nucleotide Analysis Programs (SNAP) for working with DNA sequences sampled from populations. SNAP Map collapses DNA sequence data into unique haplotypes, extracts variable sites and manipulates output into multiple formats for input into existing software packages for evolutionary analyses. Map collapses DNA(More)
Advancing technologies have facilitated the ever-widening application of genetic markers such as microsatellites into new systems and research questions in biology. In light of the data and experience accumulated from several years of using microsatellites, we present here a literature review that synthesizes the limitations of microsatellites in population(More)
BACKGROUND The Cytochrome P450 system is important in fungal evolution for adapting to novel ecological niches. To elucidate the evolutionary process of cytochrome P450 genes in fungi with different life styles, we studied the patterns of gene gains and losses in the genomes of four filamentous Ascomycetes, including two saprotrophs (Aspergillus nidulans(More)
ABSTRACT Four populations of Sclerotinia sclerotiorum in North America were inferred previously, based on analyses of both rapidly evolving markers (DNA fingerprint and mycelial compatiblity), and multilocus DNA sequence spanning the range between fast and slow evolution. Each population was defined as an interbreeding unit of conspecific individuals(More)
Dothistroma septosporum is a haploid fungal pathogen that causes a serious needle blight disease of pines, particularly as an invasive alien species on Pinus radiata in the Southern Hemisphere. During the course of the last two decades, the pathogen has also incited unexpected epidemics on native and non-native pine hosts in the Northern Hemisphere.(More)
BACKGROUND Duplication, followed by fixation or random loss of novel genes, contributes to genome evolution. Particular outcomes of duplication events are possibly associated with pathogenic life histories in fungi. To date, differential gene gain and loss have not been studied at genomic scales in fungal pathogens, despite this phenomenon's known(More)
Most of the species of fungi that cause disease in mammals, including Cryptococcus neoformans var. grubii (serotype A), are exogenous and non-contagious. Cryptococcus neoformans var. grubii is associated worldwide with avian and arboreal habitats. This airborne, opportunistic pathogen is profoundly neurotropic and the leading cause of fungal meningitis.(More)