Learn More
Animal life is controlled by neurons and in this setting cholinergic neurons play an important role. Cholinergic neurons release ACh, which via nicotinic and muscarinic receptors (n- and mAChRs) mediate chemical neurotransmission, a highly integrative process. Thus, the organism responds to external and internal stimuli to maintain and optimize survival and(More)
The synthesis and release of non-neuronal acetylcholine, a widely expressed signaling molecule, were investigated in the human placenta. This tissue is free of cholinergic neurons, i.e. a contamination of neuronal acetylcholine can be excluded. The villus showed a choline acetyltransferase (ChAT) activity of 0.65 nmol/mg protein per h and contained 500 nmol(More)
Myenteric plexus-longitudinal muscle strips isolated from the small intestine of rats were incubated with [3H]choline to measure the synthesis and the release of [3H]acetylcholine. To separate different radioactive compounds (acetylcholine, choline, phosphorylcholine) from both the tissue and the overflow a new method, the reverse phase HPLC, was used. The(More)
Acetylcholine acts as a neurotransmitter in the central and peripheral nervous systems in humans. However, recent experiments demonstrate a widespread expression of the cholinergic system in non-neuronal cells in humans. The synthesizing enzyme choline acetyltransferase, the signalling molecule acetylcholine, and the respective receptors (nicotinic or(More)
The presence of muscarinic receptors (MR) in the ovary of different species has been recognized, but the identity of these receptors as well as ovarian sources of their natural ligand, acetylcholine (ACh), have not been determined. Because luteinized human granulosa cells (GC) in culture express functional MR, we have determined whether the group of the(More)
1. Acetylcholine (ACh) represents one of the most exemplary neurotransmitters. In addition to its presence in neuronal tissue, there is increasing experimental evidence that ACh is widely expressed in pro- and eukaryotic non-neuronal cells. Thus, ACh has been detected in bacteria, algae, protozoa, tubellariae and primitive plants, suggesting an extremely(More)
The effects of metoclopramide on smooth muscle contraction and on release of acetylcholine were studied in the guinea-pig myenteric plexus longitudinal muscle preparation. Acetylcholine was determined either as endogenous acetylcholine, or as labelled transmitter from strips preloaded with 3H-choline. Metoclopramide caused an increase in resting tension of(More)
In the present study we demonstrate that acetylcholine is synthesized by cultured mammalian glial cells identified by cell-type specific markers. Primary cultures of rat brain astrocytes or microglia contained 2.0 and 1.6 pmol acetylcholine/10(6) cells on average respectively. Astrocyte cultures established from neonatal mouse brain contained even more(More)
Until recently, release studies have failed to indicate the existence of autoreceptors on motor nerves. Ignaz Wessler now reports on a refinement of the technique - the measurement of newly synthesized [3H]acetylcholine released from the phrenic nerve - which provides clear evidence in support of release-modulating autoreceptors. Presynaptic nicotinic(More)