Ignat Drozdov

Learn More
The recent discovery that microRNAs (miRNAs) are present in the circulation sparked interest in their use as potential biomarkers. In this review, we will summarize the latest findings on circulating miRNAs and cardiovascular disease but also discuss analytical challenges. While research on circulating miRNAs is still in its infancy, high analytical(More)
OBJECTIVE Activation of membrane receptor guanylate cyclase-C (GC-C) is implicated in gastrointestinal fluid and electrolyte balance, preservation of intestinal barrier integrity, anti-trophic effects and inhibition of pain sensation. To evaluate GC-C signaling, we examined the regulation of GC-C (GUCY2C/Gucy2c) and its endogenous ligands guanylin(More)
Perhexiline is a potent anti-anginal drug used for treatment of refractory angina and other forms of heart disease. It provides an oxygen sparing effect in the myocardium by creating a switch from fatty acid to glucose metabolism through partial inhibition of carnitine palmitoyltransferase 1 and 2. However, the precise molecular mechanisms underlying the(More)
Background: Rectal instillation of trinitrobenzene sulphonic acid (TNBS) in ethanol is an established model for inflammatory bowel disease (IBD). We aimed to 1) set up a TNBS-colitis protocol resulting in an endoscopic and histologic picture resembling IBD, 2) study the correlation between endoscopic, histologic and gene expression alterations at different(More)
A transgenic mouse model for conditional induction of long-term hibernation via myocardium-specific expression of a VEGF-sequestering soluble receptor allowed the dissection of the hibernation process into an initiation and a maintenance phase. The hypoxic initiation phase was characterized by peak levels of K(ATP) channel and glucose transporter 1 (GLUT1)(More)
The conventional reductionist approach to cardiovascular research investigates individual candidate factors or linear signalling pathways but ignores more complex interactions in biological systems. The advent of molecular profiling technologies that focus on a global characterization of whole complements allows an exploration of the interconnectivity of(More)
BACKGROUND In inflammatory bowel disease (IBD), genetic susceptibility together with environmental factors disturbs gut homeostasis producing chronic inflammation. The two main IBD subtypes are Ulcerative colitis (UC) and Crohn's disease (CD). We present the to-date largest microarray gene expression study on IBD encompassing both inflamed and un-inflamed(More)
Iron regulatory proteins, IRP1 and IRP2, bind to mRNAs harboring iron responsive elements and control their expression. IRPs may also perform additional functions. Thus, IRP1 exhibited apparent tumor suppressor properties in a tumor xenograft model. Here we examined the effects of IRP2 in a similar setting. Human H1299 lung cancer cells or clones engineered(More)
BACKGROUND Cellular constituents such as proteins, DNA, and RNA form a complex web of interactions that regulate biochemical homeostasis and determine the dynamic cellular response to external stimuli. It follows that detailed understanding of these patterns is critical for the assessment of fundamental processes in cell biology and pathology.(More)
Small intestinal (SI) neuroendocrine tumors (NET) are increasing in incidence, however little is known about their biology. High throughput techniques such as inference of gene regulatory networks from microarray experiments can objectively define signaling machinery in this disease. Genome-wide co-expression analysis was used to infer gene relevance(More)